NOAA NEFSC Passive Acoustics Research Group

LFDCS Reference Guide

Version 1.3
Last updated August 2022

NOAA NEFSC Passive Acoustics Research Group
Julianne Wilder, Genevieve Davis, Annamaria DeAngelis, and Sofie Van Parijs

Woods Hole Oceanographic Institution
Mark Baumgartner

University of New Brunswick
Allison Richardson and Kimberley Davies

Texas A&M University Galveston
Ana Širović and Megan Wood
Table of Contents

Introduction to LFDCS .. 4

How To Use This Reference Guide ... 5

Contact Information ... 6

PART 1: Introduction to LFDCS Desktop ... 7

Pitch Tracks: What are they? .. 8

Installing LFDCS .. 10

Call Libraries .. 16

Creating a Call Library .. 17

Building a Call Library ... 19

Managing a Call Library ... 25

Evaluating a Call Library ... 30

Comparing Actual vs. Expected Mahalanobis Distance
Multivariate Distributions with Scatterplots
Multivariate Distributions with Canonical Discriminant Function Analysis

Data Processing ... 39

Processing Datasets ... 40

Reclassifying Autodetections ... 44

Data Review ... 45

Manually Reviewing Data ... 46

Viewing/Browsing Automated Detections ... 49

Data Export ... 56

Exporting Automated Detections .. 57

Exporting Summary Sheets of Autodetections ... 61

Exporting Metadata from Processed LFDCS Datasets ... 67

Appendices ... 73

Appendix A: Parameter File ... 74

Example of Parameter File
Parameters

Appendix B: Suggested Species Daily Presence Criteria .. 80
- Right whale
- Sei whale
- Fin whale
- Humpback whale
- Blue whale

Appendix C: Tips, Tricks & Common Errors ... 84

PART 2: Introduction to LFDCS Real-Time Analysis Protocol 85
The Real-Time System: How does it work? ... 87
Reference Study .. 89
Robots4Whales Website .. 90
- Main Page
- Project Pages

Real-Time Analysis Protocol .. 105
- Species Quick Guides
- Right whale
- Sei whale
- Fin whale
- Humpback whale
- Supplementary Protocol: Identifying humpback whale song

Appendices .. 138

Appendix A: Known Idiosyncrasies .. 137
- Artifacts of the pitch tracking algorithm
- Webpage updates

Appendix B: Additional Species Analysis Protocols ... 138
- Northwest Atlantic blue whale
- North Pacific blue whale
- North Pacific fin whale
- North Pacific humpback whale

Appendix C: Known Idiosyncrasies of the North Pacific Species 166
- Call types 40 and 80
- Artifacts of the pitch tracking algorithm
- Webpage updates

References ... 167
Introduction to LFDCS

This document is a guide for how to use and apply the Low-Frequency Detection and Classification System (LFDCS) built by Dr. Mark Baumgartner at the Woods Hole Oceanographic Institution (WHOI). The LFDCS is a software system created for automated detection and classification of low-frequency baleen whale vocalizations in archival and real-time acoustic data, see Baumgartner and Mussoline 2011.

Part 1: Introduction to LFDCS Desktop of this reference guide includes instructions for installing the desktop version of the LFDCS and the fundamentals of that program: the generation of pitch tracks (contour lines that trace tonal sounds), building and managing a call library, browsing/exporting autodetections and analysis results, and species-specific analysis protocols.

The LFDCS desktop program has been used to process decades of acoustic data collected from multiple regions and recording platforms. For specific studies utilizing LFDCS to detect multiple species’ acoustic occurrence from recordings collected along the eastern seaboard by many collaborators, see Davis et al. 2017 and 2020. Those data were analyzed using the protocols described in Part 1 of this guide. These analyses have helped provide insight into the year-round distribution of fin, sei, humpback, blue, and North Atlantic right whales along their migratory routes.

Part 2: Introduction to LFDCS Real-Time Analysis Protocol of this reference guide covers the use of the LFDCS to detect and classify vocalizations recorded and transmitted via satellite in near real-time by autonomous buoys and ocean gliders equipped with the programmable digital acoustic monitoring (DMON) instrument. These detections are then uploaded to the publicly accessible website Robots4Whales: Autonomous Real-time Marine Mammal Detections created by Mark. This reference guide includes an introduction to the main features of the website, as well as data evaluation protocols which analysts can refer to in their review of pitch track data to confirm the presence of fin, sei, humpback, and North Atlantic right whales.

The LFDCS real-time analysis protocol is currently being used to analyze data from past and active deployments of autonomous platforms that are uploaded to Robots4Whales. With training, the real-time analysis protocol can help ensure inter-analyst and within-analyst consistency in confirming detections, see Baumgartner et al. 2020. The uses of the near real-time system include monitoring shipping lanes, fishing grounds, wind energy construction areas (see Van Parijs et al. 2021), migratory hotspots, and aiding visual surveys. The pitch tracking technology of the LFDCS provides accurate information about which species are present in a given area in near real time, see Baumgartner et al. 2019.

Using the LFDCS Desktop and Real-Time programs to process archival and real-time acoustic data has advantages including the ability to: process large archival datasets quickly for all species of interest, process and transmit duty cycled up to 24-hour acoustic data from active platforms in near real time, and customize the criteria used to process those datasets. The adaptability of the detector/classifier system allows new call types to be added and existing call types to be updated with new exemplars. Processing time for a full year of acoustic data is often completed within 24-48 hours, and reclassifying datasets with new call libraries takes a fraction of that time, allowing for a quick turnaround for other analyses steps. This versatility makes the LFDCS a useful tool for processing and analyzing data from different regions with different target species across multiple years (e.g., new humpback call types may be added as the song shifts from season to season). Having this historical and real-time perspective is critical in improving conservation efforts by providing scientists, industries, and the public with information on whale presence.

Back to Table of Contents
How To Use This Reference Guide

This document is organized into two parts: Introduction to LFDCS Desktop and Introduction to LFDCS Real-Time Analysis Protocol. The first part breaks down all of the different programs that are available for use with the LFDCS Desktop version. This includes detailed descriptions and instructions for creating/managing call libraries, processing archival acoustic data, reviewing data, and exporting data. See the example below of the description of the Building a Call Library program.

As shown in the example below, most program descriptions have a Code section with the basic code for the program. Depending on the program being used in the LFDCS Desktop, the code may have some commands that are helpful (and sometimes necessary) additions for specifying how you want the program to run. If applicable, these additional commands will be listed under the Commands column to the right of the code. The Code sections also have at least one example that shows the program code with file pathways and added commands. Most program descriptions will also include terminal window and LFDCS output screenshots to show what each program should look like when opened.

Example of Program Description with Code & Commands

Building a Call Library

Below are directions for how to build a new call library by adding exemplars of calls to create distinct call types within the library. This can be used from the start of creating a call library, or to add new call types to a pre-existing call library. This step requires you to have processed the deployment you wish to get exemplars from with LFDCS, as you will select pitch tracks and assign them to a designated call type.

You can specify parameters for the pitch tracks to narrow down what you have to browse through. This is helpful if you don’t know if or where target calls are in the dataset you want to choose exemplars from, and to also help scroll more quickly to possible exemplars by leaving out pitch tracks that are not suitable for the target call types.

<table>
<thead>
<tr>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Open terminal, launch IDL in ifdcs/process (hit return after typing each line of text in the command line below).</td>
</tr>
<tr>
<td>1% cd ~/Projects/Detectors/Ifdcs/process</td>
</tr>
<tr>
<td>2% idl</td>
</tr>
<tr>
<td>IDL> find_exemplars, 'ifdcs_index_file', 'call_library_file'</td>
</tr>
</tbody>
</table>
| Example: find_exemplars, '/Volumes/HARDDRIVE_NAME/NEFSC_SC_201511/NEFSC_SC_201511_site4/ifdcs/ifdcs_files/index.nc,
'/call_library/cnb_gom/call_library.nc' |

<table>
<thead>
<tr>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>start='MM/YY HH:mm:ss'</td>
</tr>
<tr>
<td>call_family=2</td>
</tr>
<tr>
<td>(*=broadband, 2=narrowband)</td>
</tr>
<tr>
<td>*LFDCS has the capacity to process broadband data, but it is still under development and not yet functional with the software.</td>
</tr>
<tr>
<td>call_type=[5,6,7]</td>
</tr>
<tr>
<td>(the numbers in the brackets are the call types from your call library that you want to browse through)</td>
</tr>
<tr>
<td>max_惠dist=3</td>
</tr>
</tbody>
</table>

Back to Table of Contents 5
Contact Information

If you have questions or require assistance with anything related to the LFDCS, please contact the appropriate person below.

Julianne Wilder - julianne.wilder@noaa.gov
- For help with navigating this reference guide
- For questions about operating desktop/real time versions of LFDCS
- For questions about archival/real time analysis protocols

Genevieve Davis - genevieve.davis@noaa.gov
- For help with download/installation of LFDCS
- For questions about the desktop version of LFDCS
- For questions about archival analysis protocols

Mark Baumgartner - mbaumgartner@whoi.edu
- To be added to email/text alerts about detections from real time platforms
- For inquiries about setting up a real time platform for your research
Part 1
Introduction to LFDCS Desktop
Introduction to LFDCS Desktop

The LFDCS, or Low-Frequency Detection and Classification System (Baumgartner and Mussoline 2011), is an acoustic detection software system that was written by Dr. Mark Baumgartner at the Woods Hole Oceanographic Institution. It is used to scan sound files and identify marine mammal calls by analyzing frequency modulated signals and producing pitch tracks of sounds, which trace changes in the frequency (pitch) of a call over time. Scientists typically examine spectrograms (frequency vs. time visual display of sound) to identify marine mammal calls, such as the one below, and pitch tracks are derived from these spectrograms. The LFDCS then compares attributes of these signals to a reference call library of species-specific call types (e.g., fin, humpback, etc.) to classify the pitch track to the species’ vocalization. The call library that each dataset is processed may contain as many target species vocalizations (or call types) as desired, and pitch tracks are compared and classified for all call types for the specific call library processed with that dataset.

Pitch Tracks: What are they?

Pitch tracks are the colored lines that the LFDCS will overlay onto sounds (typically the sounds detected at 10 dB above background noise) on a spectrogram to describe their amplitude and frequency. Exemplars of pitch tracks of known sounds (e.g., common notes from a humpback song theme) can be collected from archival sound files to create a call type that the detector can then use to detect those calls as it scans new sound files.

Image 1: Spectrogram of humpback song with Hz on the y-axis and seconds on the y-axis.

Back to Table of Contents
Image 2: Spectrogram showing the pitch tracks (black and color lines) tracing the humpback whale vocalizations. As the analyst clicks between pitch tracks, the LFDCS will highlight the selected pitch track in color showing the amplitude of that sound (warmer colors are louder, cooler colors are quieter). Surrounding pitch tracks will appear black until the analyst clicks to the left or right to select a different pitch track. The LFDCS will automatically center the selected pitch track in the spectrogram window.
Installing LFDCS
Installing LFDCS

The instructions for how to install the LFDCS and additional software on a computer (must be a Mac) are below. The instructions can also be found on the Robots4Whales website.

Install the software packages below to run the desktop LFDCS. The LFDCS and it's supported programs can be found in the LFDCS program google drive folder. For NOAA/NEFSC users, files can be found on the server under: Z\DETECTORS\LFDCS_programs.

Install IDL (required)

Obtain a license and install IDL following installation instructions from the Harris Geospatial ITT (the IDL software distribution company) downloads center, if not already installed. Use the “Native” version for gui-friendly download. The UNIX version is a terminal-based download.

Note: You may need to install XQuartz separately after installing IDL.

Install LFDCS for the first time using the lfdcs distribution file

1. Set up Terminal environment
 a. Find the Terminal application in the Applications/Utilities folder (it may be helpful to drag the application icon to the dock at the bottom of the screen to always have easy access to it)
 b. Launch Terminal
 c. Open Preferences (in the menu under “Terminal” in upper left-hand corner)
 d. Under the General tab, set “Shells open with:” to “Command” and write the following in the dialog box /bin/tcsh in the dialog box:

 /bin/tcsh

 e. In Settings, select the "Shell" tab, and set "When the shell exits" to "Close if shell exited cleanly"

2. Copy the following two LFDCS installation files to your home directory: lfdcs_v1_2.tar.gz and install_lfdcs. Your home directory is usually a folder named the same as your username (e.g., if your username is “Mark”, then your home directory is /Users/Mark).
 a. In the Terminal window, type the following to install the LFDCS software:

```
cd ~
source install_lfdcs lfdcs_v1_2.tar.gz
```

 Note: You may have to leave out the “.gz” extension if you get the notification that “lfdcs_v1_2.tar.gz does not exist”.

Back to Table of Contents
b. The install_lfdcs program should end with “Installed LFDCS!”

c. Exit the Terminal window by typing the following at the prompt:

```
exit
```

3. Configure XQuartz

 a. Open another terminal window by selecting “New Window” from the Shell menu in the Terminal application (you must close the old window and open a new window to use the terminal configuration settings you just installed with install_lfdcs)

 b. In the Terminal window, type the following to launch IDL:

```
idl
```

 Note: If, when you type “idl” the terminal responds with “idl command not found”, then you need to do one more step:

 From the Terminal menu bar, open Preferences. Go to the Profiles ↠ Shell.

 Under startup, check the box for “Run command” and “Run inside shell” and type in the space after the Run command:

```
source ~/.cshrc
```

 Note: After successfully loading IDL within the terminal, the terminal should spit out the IDL version information and installation/license information. If you see the line “%Program caused arithmetic error: Floating illegal operand” this is normal and fine to ignore, it will not affect the processing.

 c. At the IDL prompt (IDL >), type the following to launch XQuartz:

```
window, 0
```

d. You will now see the XQuartz application in the dock at the bottom of the screen (the icon looks like this: 🍀). Click on that icon, then select Preferences (in the menu under “XQuartz” in the upper left-hand corner).

e. In the Input tab, select “Emulate three button mouse”, “Follow system keyboard layout” and “Enable key equivalents under X11”

 f. In the Windows tab, select “Click-through Inactive Windows”

4. You’re ready to use the LFDCS!
Getting started on your first dataset

1. In the Finder, navigate to Projects/Detectors/lfdcs/paramfiles/test_dataset
2. Open testparam.txt in TextEdit
3. Change the Indir, Outdir, CallLibraryFile and CallLibraryFileBB directories to reflect your username (i.e., replace “Mark” with your username)
4. In a Terminal window type the following:

 `cd ~/Projects/Detectors/lfdcs/process`

 `idl`

5. In IDL, type the following:

 `reformat_detect_classify, '../paramfiles/test_dataset/testparam.txt'`

 The terminal asks you:

 "Are you sure you want to convert the recorder data to NetCDF? (y/n)"

 Type “y” and hit enter

 Note: You may get a pop up window with an error the first time running this that says: “call_tracking_lfdcs_dlm.so” cannot be opened because the developer cannot be verified. To resolve this, go into Privacy and Security and change permissions to allow that to be opened:

 System Preferences → Security & Privacy → General

 Click on the Lock button on the bottom left to make changes

 Under “Allow apps downloaded from:” click on “App store and identified developers”

 Sometimes the application pops up below in this window for the terminal program and it asks you if you want to allow to run this application anyways? Click “Allow Anyways”.

 You can then run the line of code again. You may get a second question from the terminal that says:

 "LFDCS index file exists. Overwrite? (y/n)"

 Type “y” and hit enter.

6. This program should run for less than 15 seconds and will end with the following message:

 LFDCS processing completed!
7. Congratulations, you just processed your first dataset with the LFDCS! Now type the following in IDL to view spectrograms and detections (see Viewing/Browsing Automated Detections section for more information):

`browse_autodetections, '../test_dataset/processed/lfdcs'`

Note: The first time you try to play a clip in processed data, you have to “allow” the two audio program files to run in System Preferences. See screenshots on the following page for directions on how to do this.

In the terminal, you'll see the following text error as well as the following window pop up the first time you try to play a sound:

```
IDL> browse_autodetections, '../test_dataset/processed/lfdcs'
% Compiled module: BROWSE_AUTODETECTIONS.
% Compiled module: SYMBOL_CIRCLE.
% Compiled module: READ_LFDCS_FILE_INDEX.
% Compiled module: READ_ASCII_DATA.
% Compiled module: NCDF_FILL_FLOAT.
% Compiled module: READ_LFDCS_AUTODETECTIONS.
% Compiled module: TIME_TICKS.
% Compiled module: PLOT_MINOR_DATE_TICKS.
% Compiled module: READ_RECORDER.
% Compiled module: DISPLAY_IMAGE.
% Compiled module: CUSTOMCT.
% Compiled module: HOME_DIRECTORY.
% Compiled module: XPERC.
% Compiled module: YPERC.
% Compiled module: WINDOW_BUTTONS.
% Compiled module: WHICH_BUTTON.
% Compiled module: AVG.
% PLAY_AUDIO: Error loading sharable executable.
    Did find: /Users/username/idl_dlm/audio_dlm.so: code signature in (/Users/username/idl_dlm/audio_dlm.so) not valid for use in process
    using Library Validation: library load disallowed by system policy
% Execution halted at: BROWSE_AUTODETECTIONS 424
/Users/username/Projects/Detectors/lfdcs/process/
browse_autodetections.pro
% $MAIN$
```
You then have to go into System Preferences → Security and Privacy. Here, the file should be listed under the “Allow apps downloaded from:” section. Click “Allow Anyway”.

You may have to repeat this process twice the first time you try playing a sound. These are two files Mark wrote to allow you to listen to the audio through LFDCS. Once the computer has allowed these two files to execute, you should not have any issues playing a sound.
Call Libraries

Note: This section may be skipped if using an existing call library.
Creating a Call Library

Below are directions for how to create a new call library that can be used to process datasets.

Code

1. Within lfdcs/call_library folder, create a new folder clXX_ZZZZ

 Note: XX = nb for narrowband call library or *bb for broadband call library; ZZZZ = call library name (e.g. gom)

 LFDCS has the capacity to process broadband data, but it is still under development and not yet functional with the software

 Example: 'clnb_gom', or in the following case, 'clnb_test'

2. Open terminal, launch IDL in lfdcs/process (hit return after entering each line of entered in the terminal below).

 1% cd ~/Projects/Detectors/lfdcs/process
 2% idl
 IDL> create_call_library

3. Follow prompts to create and annotate the new call library (see screenshot for previous step)

 a. Enter the call library file name. The first part of this will be the name of the folder you created in step #1. Follow that folder name with /call_library.nc

 b. Enter a unique description of the call library. This is metadata text for however you want to describe your call library.

 c. Enter "n" or "b" to define if the call library is a narrow band or *broadband call library (at the moment, only “n” should be entered.

 LFDCS has the capacity to process broadband data, but it is still under development and not yet functional with the software.
Once these three steps have been completed, the following files should populate the new clXX_YYYY folder:
Building a Call Library

Below are directions for how to build a new call library by adding exemplars of calls to create distinct call types within the library. This can be used from the start of creating a call library, or to add new call types to a pre-existing call library. This step requires you to have processed the deployment you wish to get exemplars from with LFDCS, as you will select pitch tracks and assign them to a designated call type.

You can specify parameters for the pitch tracks to narrow down what you have to browse through. This is helpful if you don’t know if or where target calls are in the dataset you want to choose exemplars from, and to also help scroll more quickly to possible exemplars by leaving out pitch tracks that are not suitable for the target call types.

Code

1. Open terminal, launch IDL in lfdcs/process (hit return after typing each line of text in the command line below).

 1% cd ~/Projects/Detectors/lfdcs/process
 2% idl

 IDL> find_exemplars, 'lfdcs_index_file', 'call_library_file'

Example:

```idl
find_exemplars, '/Volumes/ExternalHD/NEFSC_SC_201511_site4/lfdcs/lfdcs_files_index.nc', '../call_library/clnb_gom/call_library.nc'
```

Note: If there are more than eight call types in a call library not all of them will display as buttons along the right-hand side of the desktop window. Use the "call_type_buttons" command to specify which call types you would like to display as buttons.

Example for call library with eight or more call types:

```idl
find_exemplars, '/Volumes/ExternalHD/NEFSC_SC_201511_site4/lfdcs', '../call_library/clnb_gom9/call_library_gom9.nc', call_type_buttons=[1,2,3,4,6,7,8,10]
```

See example terminal window on pg. 21.

Commands

start= ‘MM/DD/YY HH:MM:SS’

To specify the date/time to start browsing for exemplars in MM/DD/YY HH:MM:SS format (e.g., start='01/20/15 19:30:00')

call_family

To view all autodetections in a call family (*1=broadband, 2=narrowband) (e.g., call_family=2)

LFDCS has the capacity to process broadband data, but it is still under development and not yet functional with the software.

call_type

To specify which call types you want to browse for and use in your current call library (e.g., call_type=[1, 2, 3]). If you have multiple call type values in order you can enter the range using a colon (e.g., instead of call_type=[1,2,3,4,5,6], use call_type=[1:6]).

call_type_buttons

To specify which call types you would like to specify as buttons in the desktop view (e.g., call_type_buttons=[1,2,3,4,6,7,8,10])
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>min_amplitude</code></td>
<td>To view all autodetections greater than or equal to a specified minimum amplitude (in dB above background)</td>
<td><code>min_amplitude=12</code></td>
</tr>
<tr>
<td><code>max_amplitude</code></td>
<td>To view all autodetections less than or equal to a specified maximum amplitude (in dB above background)</td>
<td><code>max_amplitude=20</code></td>
</tr>
<tr>
<td><code>min_mdist</code></td>
<td>To view all autodetections greater than or equal to a specified minimum Mahalanobis distance</td>
<td><code>min_mdist=1.0</code></td>
</tr>
<tr>
<td><code>max_mdist</code></td>
<td>To view all autodetections less than or equal to a specified maximum Mahalanobis distance</td>
<td><code>max_mdist=3.0</code></td>
</tr>
<tr>
<td><code>min_freq</code></td>
<td>To view all autodetections greater than or equal to a specified minimum frequency (in Hz)</td>
<td><code>min_freq=200</code></td>
</tr>
<tr>
<td><code>max_freq</code></td>
<td>To view all autodetections less than or equal to a specified maximum frequency (in Hz)</td>
<td><code>max_freq=800</code></td>
</tr>
<tr>
<td><code>min_duration</code></td>
<td>To view all autodetections greater than or equal to a specified minimum duration (in seconds)</td>
<td><code>min_duration=1.0</code></td>
</tr>
<tr>
<td><code>max_duration</code></td>
<td>To view all autodetections less than or equal to a specified maximum duration (in seconds)</td>
<td><code>max_duration=4.0</code></td>
</tr>
</tbody>
</table>
Terminal Window

```bash
1% cd ~/Projects/Detectors/lfacs/process
2% idl
IDL Version 8.4, Mac OS X (darwin x86_64 m64). © 2014, Exelis Visual Information Solutions, Inc.
Installation number: 246512.
Licensed for use by: Woods Hole Oceanographic Institution

IDL> find exemplars, '~/Volumes/NEF3C_22/NEF3C_SC_201511/NEF3C_SC_201511_01H/', '~/coll_library/clib_gem9/call_library/gem9.rc', call type buttons=[1,2,3,4,6,7,8,10]
 % Compiled modules: FIND_EXEMPLARS.
 % Compiled modules: SLASH_CHECK.
 % Compiled modules: READ_LFC5S_CALL_LIBRARY.
 % Compiled modules: STRIP_FILE_EXTENSION.
 % Loaded DLL: NCF.
 % Compiled module: GET_NCEF_VARIABLE.
 % Compiled module: CALCULATE_JULIAN.
 % Compiled module: JULDAY.
 % Compiled module: FIND_NCALL.
 % Compiled module: FIND_NDEXEMPL.
 % Compiled module: CHECK_AND_BACKUP_CALL_LIBRARY.
 % Compiled modules: READ_LFC5S_FILE_INDEX.
 % Compiled modules: READ_RECORDER_INDEX.
 % Compiled modules: READ_LFC5S.AUTODETECTIONS.
 % Compiled modules: STRING_TO_JULIAN.
 % Compiled module: READ_RECORDER.
 % Compiled module: NCEF_FILL_FLOAT.
 % Compiled module: SYMBOL_CIRCLE.
 % Compiled module: TIME_TICKS.
 % Compiled module: CALCULATE_GREGORIAN.
 % Compiled module: CALDAT.
 % Compiled modules: PLOT_MINOR_DATE_TICKS.
 % Compiled module: DISPLAY_IMAGE.
 % Compiled module: COMBOCT.
 % Compiled module: TEXT_COLOR.
 % Compiled modules: CUSTOMCOLOR.
 % Compiled module: HOME_DIRECTORY.
 % Compiled module: MONOTONIC.
 % Compiled module: JULIAN_TO_STRING.
 % Compiled module: TEXT_BOX.
 % Compiled module: QFA_PREDICT_SINGLE.
 % Compiled module: XPERC.
 % Compiled modules: YPERC.
 % Compiled module: WINDOW_BUTTONS.
```
Desktop Buttons
The following image and descriptions explain the basic functions available when building a call library. The buttons along the left-hand side of the window are standard in most LFDCS programs, the buttons along the right-hand side of the window are specific to the find_exemplars function.

The functions of the white buttons and the call type buttons along the right side are described below.

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select next detection/pitch track (not a visible button in the image above)</td>
<td>Click on (or hover cursor over the spectrogram window and scroll) the black background anywhere on the right-hand side of the window to navigate to the next automated detection (pitch track).</td>
</tr>
<tr>
<td>Select previous detection/pitch track (not a visible button in the image above)</td>
<td>Click on (or hover cursor over the spectrogram window and scroll) the black background anywhere on the left-hand side of the window to navigate to the next automated detection (pitch track).</td>
</tr>
<tr>
<td>'Page forward'</td>
<td>Click on (or hover cursor over button and scroll) the 'Page forward' button to move forward to the next section (new window) of the spectrogram that has detections. This allows the analyst to scroll through detections more quickly on a viewing window basis, rather than clicking through each individual pitch track.</td>
</tr>
<tr>
<td>'Page backward'</td>
<td>Moves back to the previous section (or viewing window) of the spectrogram that has detections.</td>
</tr>
<tr>
<td>'Zoom in'</td>
<td>Zooms in on the selected pitch track on the time (x) axis.</td>
</tr>
<tr>
<td>Button</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>'Zoom out'</td>
<td>Zooms out from the selected pitch track on the time (x) axis.</td>
</tr>
<tr>
<td>'Jump'</td>
<td>Jumps to the specified section of the spectrogram/audio file. After clicking, navigate back to the terminal window and enter the desired date and time in the MM/DD/YY HH:MM:SS format.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Jump to date (mm/dd/yy hh:mm:ss) -> 01/29/16 04:13:58</td>
</tr>
<tr>
<td>'Volume/Speed'</td>
<td>Adjusts volume and playback speed of audio file. After clicking, navigate back to the terminal window and enter the desired volume (on a scale of 1-10) and desired speed. Default values are both 1 whenever a processed deployment is opened from the terminal.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Volume -> 7 Speed -> 2</td>
</tr>
<tr>
<td>'Audio filter off'</td>
<td>Click on the 'Audio filter off' button to apply a band pass filter to filter out background noise above and below the selected pitch track. If this is toggled on, you will only hear the frequency range in which the pitch tracked call occurs.</td>
</tr>
<tr>
<td>'Play'</td>
<td>Plays a 5 second clip containing the selected detection (at selected volume and speed).</td>
</tr>
<tr>
<td>'Play range'</td>
<td>Plays a clip selected by the analyst. After clicking, click a point on the spectrogram where range should start, then click a point on the spectrogram where listening range should end. The selected audio range will start playing automatically.</td>
</tr>
<tr>
<td></td>
<td>Note: If a click is made anywhere on the black background before or after the spectrogram, it will be included in the playback.</td>
</tr>
<tr>
<td>'Freq range'</td>
<td>Adjusts the maximum frequency range (y-axis) of the viewing window. After clicking, navigate back to the terminal window and enter the desired maximum frequency in Hz. The minimum frequency will remain 0 Hz.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Maximum frequency: 600</td>
</tr>
<tr>
<td>'Hide pitch tracks'</td>
<td>Hides the pitch tracks to reveal the raw spectrogram image (this is convenient especially when determining that a certain pitch track is correctly classifying a sound and is not a false detection). Click the button again to show pitch tracks.</td>
</tr>
<tr>
<td>'Compare audio'</td>
<td>Click on the 'Compare audio' button to listen to the selected pitch track audio and the audio of the exemplars of the call type to which you are comparing it.</td>
</tr>
</tbody>
</table>
When you click the 'Compare audio' button, you will be prompted in the terminal window to select the call type you’d like to compare it to. Once the call type is selected, you will hear the audio for your selected pitch track, followed by the audio of the first exemplar of the selected call type, followed by your selected pitch track, followed by the second exemplar of the selected call type, and so on through all the exemplars of that call type.

To stop the audio, click 'q' and it will quit the function.

| 'Add call types' | Click on the 'Add call types' button to add a new call type to the call library. Once the button is clicked, follow the prompts in the terminal window to complete the necessary information for that call type. |
| 'Quit' | Quits the LFDCS program, allowing the analyst to then close out of the desktop window and terminal. **Use this button first to properly exit the program, then click on the "x" button on the top left corner of the window.** The LFDCS window will not close properly if the “Quit” button is not clicked before the “x” button. |

Call type buttons along the right-hand side of the desktop window

Each call type button will appear with a different color and call type number that was specified when the call type was first created.

Example call type button:

1. Se whale downsweep

Once the pitch track of interest is selected (colored) in the desktop window, click on the target call type button along the right-hand side of the window to add the pitch track as an exemplar for that call type.

Click on (or hover cursor over and scroll) the black background anywhere on the left- or right-hand side of the window (not on a button) to navigate between the automated detections (pitch tracks) without selecting them as exemplars for a call type.
Managing a Call Library

Below are directions for how to manage a call library and assess the attributes of the different call types and their respective exemplars that have been added to the library. All seven call type attributes are amplitude-weighted (AW) statistics.

Code

1. Open terminal, launch IDL in lfdcs/process (hit return after typing each line of text in the command line below).

 1% cd ~/Projects/Detectors/lfdcs/process
 2% idl
 IDL> manage_call_library, 'call_library_file'

Program will list call types within the call library, and prompt you to select which call type to open specs on. Once a call type is entered, a series of windows (see screenshots and descriptions below) will pop up. A list of commands in the terminal window is given for actions you can take relating to the call type (e.g., play, view in spectrogram, delete exemplar, move exemplar to different call type, etc.). Commands are listed in the terminal window with the correct letter key in () to press to execute command. You can use the different commands to view and manage exemplars and distribution of attributes for that call type.

Example:
manage_call_library, './call_library/clnb_gom9/call_library_gom9.nc'

See example terminal windows on following pages.
<table>
<thead>
<tr>
<th>Type</th>
<th>n</th>
<th>Species</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74</td>
<td>Sei whale</td>
<td>downswing</td>
<td>80-30 Hz downswing</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>Sei whale</td>
<td>high downswing</td>
<td>130-70 Hz downswing</td>
</tr>
<tr>
<td>3</td>
<td>117</td>
<td>Sei whale</td>
<td>long downswing</td>
<td>30-20 Hz long duration downswing</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>Fin whale</td>
<td>20-Hz pulse</td>
<td>20-Hz pulse</td>
</tr>
<tr>
<td>5</td>
<td>205</td>
<td>Right whale</td>
<td>upcall</td>
<td>100-200 Hz upcall</td>
</tr>
<tr>
<td>6</td>
<td>144</td>
<td>Right whale</td>
<td>check upswing</td>
<td>Attack with slight downswing, then rapid upswing</td>
</tr>
<tr>
<td>7</td>
<td>196</td>
<td>Right whale</td>
<td>steep high upswing</td>
<td>Rapid upswing ending around 200 Hz</td>
</tr>
<tr>
<td>8</td>
<td>164</td>
<td>Right whale</td>
<td>short upswing</td>
<td>Short duration upswing</td>
</tr>
<tr>
<td>9</td>
<td>63</td>
<td>Right whale</td>
<td>long upswing</td>
<td>90-250 Hz long upswing</td>
</tr>
<tr>
<td>10</td>
<td>39</td>
<td>Right whale</td>
<td>moan</td>
<td>Long duration quasi-tonal call</td>
</tr>
<tr>
<td>11</td>
<td>71</td>
<td>Humpback whale</td>
<td>upswing 100-150 Hz</td>
<td>Upswing similar to right whale upswing</td>
</tr>
<tr>
<td>12</td>
<td>31</td>
<td>Humpback whale</td>
<td>tonal</td>
<td>2 second tonal with slight downswing</td>
</tr>
<tr>
<td>13</td>
<td>181</td>
<td>Humpback whale</td>
<td>low-frequency</td>
<td>Downswing similar to sei whale downswing</td>
</tr>
<tr>
<td>14</td>
<td>123</td>
<td>Humpback whale</td>
<td>upswing 100-500 Hz</td>
<td>Rapid upswing similar to right whale upc</td>
</tr>
<tr>
<td>15</td>
<td>168</td>
<td>Humpback whale</td>
<td>downswing</td>
<td>Long "straight" 300-100 Hz downswing</td>
</tr>
<tr>
<td>16</td>
<td>123</td>
<td>Humpback whale</td>
<td>short downswing</td>
<td>Short "straight" 300-100 Hz downswing</td>
</tr>
<tr>
<td>17</td>
<td>192</td>
<td>Humpback whale</td>
<td>mid-frequency</td>
<td>Downswing similar to right whale upc</td>
</tr>
<tr>
<td>18</td>
<td>151</td>
<td>Humpback whale</td>
<td>Inverted "U" (new)</td>
<td>Inverted 100-150 Hz "U" call w upper harmonic</td>
</tr>
<tr>
<td>19</td>
<td>211</td>
<td>Humpback whale</td>
<td>Variable downswing</td>
<td>Variations of a 550-200 Hz downswoping arch</td>
</tr>
<tr>
<td>20</td>
<td>146</td>
<td>Hard drive</td>
<td>HF hard drive</td>
<td>Upwiping 1000-1000 Hz upwiping FT of hard drive noise</td>
</tr>
<tr>
<td>21</td>
<td>132</td>
<td>Hard drive</td>
<td>Hard drive downw</td>
<td>Downwiping FT of hard drive noise</td>
</tr>
<tr>
<td>22</td>
<td>188</td>
<td>Hard drive</td>
<td>Hard drive tonal</td>
<td>Long tonal component of hard drive noise</td>
</tr>
<tr>
<td>23</td>
<td>162</td>
<td>Hard drive</td>
<td>HF hard drive</td>
<td>100-400 Hz steep upwiping from hard drive noise</td>
</tr>
</tbody>
</table>
Key for 7 Call Type Attributes:
- \(\text{awfreq} \) = Average frequency
- \(\text{awfreq}_{\text{stdev}} \) = Frequency variation
- \(\text{awtime}_{\text{stdev}} \) = Duration
- \(\text{awslope} \) = Time-frequency slope
- \(\text{aws1} \) = Slope of the beginning (first third) of the call/pitch track
- \(\text{aws2} \) = Slope of the middle (second third) of the call/pitch track
- \(\text{aws3} \) = Slope of the end (last third) of the call/pitch track

Call Type Terminal Window

<table>
<thead>
<tr>
<th>Call type</th>
<th>awfreq</th>
<th>awfreq_{stdev}</th>
<th>awtime_{stdev}</th>
<th>awslope</th>
<th>aws1</th>
<th>aws2</th>
<th>aws3</th>
<th>wset_index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Back to Table of Contents 27
Window IDL 0: This window shows the distribution of each attribute for all of the exemplars for the call type specified.

Window IDL 2: This window shows the distribution of each attribute for all of the exemplars for the call type specified.
Window IDL 3: This window shows all of the exemplar pitch tracks for the call type selected, with the exemplar’s identification number below.

You can then browse through exemplars using the commands in the terminal window to see where they fall on the distribution plots, and can further delete an exemplar or move it to a new call type. The current pitch track selected will be highlighted in yellow in Windows IDL 2 and 3, and there will be a vertical line on the bar plots in window IDL 0 indicating where that exemplar lies in the distribution. If there are any exemplars that are outliers, they will be highlighted in red.

Caution: Highlighted outliers will change drastically as you add/adapt your call library, and as you delete one outlier it will likely create another. Use caution when removing outliers until you have sufficiently built your call library to have enough exemplars that deleting an outlier will only improve your call library. See the next section about evaluating your call library further.
Evaluating a Call Library

Below are directions for how to evaluate a call library. Quadratic discriminant function analysis relies on the assumption that the distribution of the seven attributes for a particular call type are multivariate normal (or nearly so). Visualizing data from tens to hundreds of exemplars in seven dimensions is impossible, the following tools can be used to aid in evaluating the exemplar data. It is also important to ensure that call types do not overlap in multivariate space too much, as the discriminant function analysis will confuse such overlapping call types. When these overlapping call types are produced by different species, the chance of misclassifying species increases.

Comparing Actual vs. Expected Mahalanobis Distance

Samples drawn from a multivariate normal population have a known distribution of univariate Mahalanobis distances (the "distance" from the sample to the mean vector that accounts for the "shape" of the multivariate normal distribution as described by the variance-covariance matrix). The square of the Mahalanobis distance should have a chi-squared distribution with p degrees of freedom where p is the number of attributes in the call library (p = 7 in this case).

If the distribution of Mahalanobis distances for a call type does not conform to the expected distribution (the chi-squared distribution), then it is likely that the underlying distribution of attributes for the call type in question is not multivariate normal. When a call type is not multivariate normal, the discriminant function analysis may not always classify calls as expected (since it is violating one of the underlying assumptions of discriminant function analysis). Follow the directions below to check the Mahalanobis distribution of each call type in a call library.

<table>
<thead>
<tr>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Open terminal, launch IDL in lfdcs/process (hit return after typing each line of text in the command line below).</td>
</tr>
<tr>
<td>1% cd ~/Projects/Detectors/lfdcs/process</td>
</tr>
<tr>
<td>2% idl</td>
</tr>
<tr>
<td>IDL> plot_mdist_distribution, 'call_library_file'</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>plot_mdist_distribution, './call_library/clnb_gom9/call_library_gom9.nc', call_type=[5,6,7], /ps</td>
</tr>
<tr>
<td>See example terminal window on the following page.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>call_type</td>
</tr>
<tr>
<td>To look at a subset of call types (e.g., call_type=[5,6,7])</td>
</tr>
<tr>
<td>/ps</td>
</tr>
<tr>
<td>To export the results as a Postscript file that can be opened with a PDF reader; this will give you a larger view and allows you to zoom in on the figures in the LFDCS output</td>
</tr>
</tbody>
</table>
Terminal Window

Last login: Mon Feb 21 13:38:47 on ttys000
1% cd ~/Projects/Detectors/lfdc5/process
2% idl
IDL Version 8.4, Mac OS X (darwin x86_64 m64). (c) 2014, Exelis Visual Information Solutions, Inc. Installation number: 246512.
Licensed for use by: Woods Hole Oceanographic Institution

IDL> plot_mdist_distribution, '/csl/libary/csl/csl_process/plot_mdist_distribution.nc'
% Compiled modules: PLOT_MDIST_DISTRIBUTION.
% Compiled module: TBK_COLOR.
% Compiled module: READ_LFDCS_CALL_LIBRARY.
% Compiled module: STRIP_FILE_EXTENSION.
% Loaded DLL: NCDF.
% Compiled module: GET_NCDF_VARIABLE.
% Compiled module: CALCULATE_JULIAN.
% Compiled module: JULDAY.
% Compiled module: COMPUTE_CDF.
% Compiled module: MONOTONIC.
% Compiled module: CHISQ_PDF.
% Compiled module: GAMMA.
% Compiled module: TEXT_BOX.
% Compiled module: COMPUTE_HISTOGRAM.

LFDCS Output

The following images show an example of the plot_mdist_distribution output. Each plot shows the distribution of Mahalanobis distances for a call type (cumulative probability distribution on left, probability distribution function on right) compared to the ideal distribution for a multivariate normal distribution (in red).
Multivariate Distributions with Scatterplots

To assess overlap in multivariate distributions, a simple set of scatterplots showing each call type's attributes plotted against one another can be used. Separation between call types in one or more of these plots suggests that the call types can be discriminated. Follow the directions below to produce these scatterplots.

<table>
<thead>
<tr>
<th>Code</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Open terminal, launch IDL in lfdcs/process (hit return after typing each line of text in the command line below).</td>
<td>call_type</td>
</tr>
<tr>
<td>1% cd ~/Projects/Detectors/lfdcs/process</td>
<td>To look at a subset of call types (e.g., call_type=[5,6,7])</td>
</tr>
<tr>
<td>2% idl</td>
<td>/ps</td>
</tr>
<tr>
<td>IDL> compare_call_types_scatter, 'call_library_file'</td>
<td>To export the results as a Postscript file that can be opened with a PDF reader; this will give you a larger view and allows you to zoom in on the figures in the LFDCS output</td>
</tr>
</tbody>
</table>

Example:
compare_call_types_scatter,
'../call_library/clnb_gom9/call_library_gom9.nc',
call_type=[5,6,7], /ps

See example terminal window on the following page.
Terminal Window

Last login: Mon Feb 4 18:32:17 on tty5008
1% cd ~/Projects/Detectors/ldcs/process
2% id

IDL Version 8.4, Mac OS X (darwin x86_64 m64). (c) 2014, Exelis Visual Information Solutions, Inc. Installation number: 246E12.
Licensed for use by: Woods Hole Oceanographic Institution

IDL> compare_call_types_scatter, '../call_library/c1nt_gom9/call_library_gom9.nc'
% Compiled module: COMPARE_CALL_TYPES_SCATTER.
% Compiled module: TEK_COLOR.
% Compiled module: SYMBOL_CIRCLE.
% Compiled module: READ_LDCS_CALL_LIBRARY.
% Compiled module: STRIP_FILE_EXTENSION.
% Loaded DLM: NCDF.
% Compiled module: GET_NCDF_VARIABLE.
% Compiled module: CALCULATE_JULIAN.
% Compiled module: JULDAY.
% Compiled module: FIND_NEXEMPLAR.
% Compiled module: LEGEND_MFB.
% Compiled module: SET_SYMBOL.

IDL>

Back to Table of Contents
Key for 7 Call Type Attributes:

- awfreq = Average frequency
- awfreq_stdev = Frequency variation
- awtime_stdev = Duration
- awslope = Time-frequency slope
- aws1 = Slope of the beginning (first third) of the call/pitch track
- aws2 = Slope of the middle (second third) of the call/pitch track
- aws3 = Slope of the end (last third) of the call/pitch track

LFDCS Output

Note: The resulting LFDCS output window that appears once you enter this code may be very small and difficult to view. To expand the window, click and drag the bottom right-hand corner of the window outward. Then go back to the terminal window and re-enter the last line of code.
LFDCS Output as a Postscript File

Using the `/ps` command with your code will export a Postscript file (compare_call_types_scatter.ps) to your lfds/process folder that you can open as a PDF. This will allow you to view a larger version of the LFDCS output and zoom in as needed.
Multivariate Distributions with Canonical Discriminant Function Analysis

To assess overlap in multivariate distributions, canonical discriminant function analysis (CDFA) can be used to reduce the seven attribute dimensions down to two so that the distributions can be directly visualized using scatterplots. CDFA seeks to find linear combinations of the seven variables that best discriminates between the call types. By plotting the first two linear combinations (canonical variables), it is possible to visualize which call types are well separated and which overlap. It is important to recognize that the CDFA plots are a "representation" of the 7-dimensional distribution of the attributes for each call type; they are not the actual multivariate distributions. Caution is warranted when interpreting these plots, but they can give helpful clues about which call types may interfere with one another. Follow the directions below to generate the CDFA plots.

Code

1. Open terminal, launch IDL in lfdcs/call_library (hit return after typing each line of text in the command line below).

   ```idl
   1%  cd ~/Projects/Detectors/lfdcs/call_library
   2%  idl
   IDL> compare_call_types_canonical,
       'call_library_file'
   ``

   **Example:**
   ```idl
 compare_call_types_canonical,
 './call_library/clnb_gom9/call_library_gom9.nc',
 call_type=[5,6,7], /ps
   ```

   See example terminal window on the following page.

**Commands**

- **call_type**
  To look at a subset of call types (e.g., call_type=[5,6,7])

- **/ps**
  To export the results as a Postscript file that can be opened with a PDF reader; this will give you a larger view and allows you to zoom in on the figures in the LFDCS output.
Terminal Window

Last login: Mon Feb 21 19:12:14 on tty1
1% cd ~/Projects/Detectors/lfdsces/process
2% idl
IDL Version 8.4, Mac OS X (darwin x86_64 m64). (c) 2014, Exelis Visual Information Solutions, Inc. Installation number: 246512.
Licensed for use by: Woods Hole Oceanographic Institution

IDL> compare_call_types_canonical, ../../../call_library/cnib_gom9/call_library_gom9.nc
% Compiled module: COMPARE_CALL_TYPES_CANONICAL.
% Compiled module: TEK_COLOR.
% Compiled module: SYMBOL_CIRCLE.
% Compiled module: READ_LFDCS_CALL_LIBRARY.
% Compiled module: STRIP_FILE_EXTENSION.
% Loaded DLM: NCDF.
% Compiled module: GET_NCDF_VARIABLE.
% Compiled module: CALCULATE_JULIAN.
% Compiled module: JULDAY.
% Compiled module: FIND_NEXEMPLAR.
% Compiled module: CANONICAL_DISCRIMINANT_ANALYSIS.
% Compiled module: AVG.
% Compiled module: STDEV.
% Compiled module: QRFAC.
% Compiled module: REAL_PART.
% Compiled module: CHISQR_PDF.
% Compiled module: IGAMMA.
% Compiled module: CORRELATE.
% Compiled module: XPERC.
% Compiled module: YPERC.
% Compiled module: LEGEND_MF6.
% Compiled module: SET_SYMBOL.
IDL>
**LFDCS Output**

Note: The resulting LFDCS output window that appears once you enter this code may be very small and difficult to view. To expand the window, click and drag the bottom right-hand corner of the window outward. Then go back to the terminal window and re-enter the last line of code.
Processing Datasets

Below are directions for how to run audio files through the LFDCS to prepare for analysis. You must create a parameter file (in the directory /Users/username/Projects/Detectors/lfdcs/paramfiles) for each dataset (unique recorder) you want to process. See testparam.txt in the lfdcs/paramfiles folder, and Appendix A for an example and explanation of the parameters.

There are two steps that occur in this process; the first is creating a standalone version of the audio data- this reformats the recordings and spectrograms as netcdf files (.nc). This process does not affect your original audio, and allows you to have a separate copy of the acoustic data that is compatible with all LFDCS programs and associated analysis. Once you process your acoustic files with LFDCS, you do not have to access the original audio again: the LFDCS will use the netcdf files created. These reformatted netcdf versions of the acoustic data are kept in the “specaudio” folder in the created output folder.

The second step of the processing is the LFDCS portion, where the specaudio files are screened and pitch tracks are generated. As the pitch tracks are generated, they are classified based on the call library you direct the program to in the paramfile. Pitch track information, including their classifications, are stored in the “lfdcs” folder of the output folder. Included in this folder is an archive of the call libraries that were run on the data (in the “call_library_nb” and “call_library_bb” folders). After a full, successful processing of a dataset, your output folder will have a “specaudio” and an “lfdcs” folder. The output directory structure is as follows:
**Note:** NEFSC processes and resamples datasets with two different sample rates and call libraries (for humpback, sei, and NARW, acoustic data is resampled in the processing stage to 2000Hz; for fin and blue whales, datasets are resampled to 128Hz). Once specaudio is created for the 2kHz sample rate, you can use that specaudio to resample for lower frequencies, rather than having to re-process the original audio. See example in paramfiles/Davis_etal ending in “_LF_specaudio” for specification on how to do this. You can set the resample rate in the parameter file using “ResampleRate: X”, where X is the sample rate in Hz to resample your raw data at; for any data that has a sample rate higher than 2kHz, you’ll have to set this parameter for any processing.

**Tip:** If you have multiple projects/datasets, you may want to create folders for each, with one parameter per recorder/processing round. If, for example you have data from multiple recorders from the Gulf of Maine and the Gulf of Mexico, it is good practice to have separate folders for these projects (e.g., GOMaine, GOMexico), with specific names for each parameter file corresponding to the deployment/recorder being processed. If you are processing the same recorder with multiple sampling rates (see above Note), it is good practice to add a specification in the parameter name (e.g., _2kHz, _LF).

<table>
<thead>
<tr>
<th>Code</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In lfdcs/paramfiles, create and edit a new parameter file with your processing parameters (see testparam.txt example in Appendix A)</td>
<td>/nolfds&lt;br&gt; To only convert raw audio to specaudio files without running LFDCS</td>
</tr>
<tr>
<td>2. Open terminal, launch IDL in lfdcs/process (hit return after typing each line of text in the command line below)</td>
<td>/noconvert&lt;br&gt;To only run LFDCS without converting raw audio to specaudio files. Note: The specaudio files must already exist to use this command.</td>
</tr>
<tr>
<td>1% cd ~/Projects/ Detectors/lfdcs/process&lt;br&gt; 2% idl</td>
<td>start_date= ‘MM/DD/YY HH:MM:SS’&lt;br&gt;To specify the date/time to start reformatting and processing in MM/DD/YY HH:MM:SS format (e.g., start_date=’02/01/10 00:00:00’)&lt;br&gt;end_date= ‘MM/DD/YY HH:MM:SS’&lt;br&gt;To specify the date/time to end reformatting and processing in MM/DD/YY HH:MM:SS format (e.g., end_date=’02/15/10 00:00:00’)</td>
</tr>
<tr>
<td>3. Process new recordings:</td>
<td>/verbose&lt;br&gt;To output extra information about processing</td>
</tr>
<tr>
<td>IDL&gt; reformat_detect_classify, 'parameter_file'</td>
<td></td>
</tr>
<tr>
<td>Example: reformat_detect_classify, './paramfiles/NEFSC_SC_201511_site4.txt', start_date='02/01/10 00:00:00', end_date='02/15/10 00:00:00', /nolfds, /verbose</td>
<td></td>
</tr>
<tr>
<td>4. Confirm to process data.</td>
<td></td>
</tr>
<tr>
<td>The terminal asks you:</td>
<td></td>
</tr>
<tr>
<td>&quot;Are you sure you want to convert data to NetCDF? (y/n)&quot;</td>
<td></td>
</tr>
<tr>
<td>Type “y” and hit enter</td>
<td></td>
</tr>
</tbody>
</table>
Note: If you have already processed this dataset and are reprocessing, or restarting due to it halting, another prompt will pop up saying:

"LFDCS files already exist, do you want to overwrite? (y/n)"

Type "y" and hit enter
Setting date to what it *should* be based on the length of the last file...

Writing
/Users/psh/Projects/Detectors/lfds/test_dataset/processed/specaudio/2009_03/w0c resin buoy_nopp5_naru_5_000030_013000.nc
Writing
/Users/psh/Projects/Detectors/lfds/test_dataset/processed/specaudio/2009_03/w0c resin buoy_nopp5_naru_5_000030_023000.nc
Writing
/Users/psh/Projects/Detectors/lfds/test_dataset/processed/specaudio/2009_03/w0c resin buoy_nopp5_naru_5_000030_033000.nc
% Compiled module: GET_RUN_VARIANT.

% Compiled module: READ_RECORDER_INDEX.
Creating /Users/psh/Projects/Detectors/lfds/test_dataset/processed/lfds/lfds_files_index.nc
% Compiled module: CREATE_LFDCS_INDEX_FILE.
Creating /Users/psh/Projects/Detectors/lfds/test_dataset/processed/lfds/call_library.nb
Creating /Users/psh/Projects/Detectors/lfds/test_dataset/processed/lfds/call_library_bb/
% Compiled module: STRIP_FILE_EXTENSION.
% Compiled module: REFORMAT_PARAMETERS_FOR_LFDCS.
% Compiled module: REFORMAT_CALL_LIBRARY_FOR_LFDCS.
% Compiled module: READ_LFDCS_CALL_LIBRARY.
% Compiled module: CREATE_LFDCS_FILES.
% Loaded DU: CALL_TRACKING_LFDCS_LLN.
% Compiled module: CONSOLIDATE_DETECTION_FILES.
% Compiled module: COPY_MDF.
Time elapsed for 2009_03/lfds_w0c resin buoy_nopp5_naru_5_000030_000000.nc: 0 hours, 0 minutes, and 22 seconds

******************************************************************************
LFDCS processing completed
******************************************************************************
Reclassifying Autodetections

Below are directions for how to reclassify a processed dataset with a different call library. This may be needed if a new call library was created, or additional call types of a call library were created, and you wish to reclassify the pitch tracks to the new/different call library. This will overwrite your current lfdcs folder, however please see the note below about classified pitch tracks. It is always a good idea to save a backup copy of your previous lfdcs folder in case you wish to compare or maintain previous analyses.

Note: If you already analyzed a dataset and marked detections as “correct”, “incorrect”, or “unknown”, the pitch tracks keep this marking even if their call type changes when reclassifying to a different call library. To erase and overwrite call classifications, you can reprocess the datasets with a parameter file (directing to the new call library) and add the command “/noconvert” to the code and it will skip the process that writes the specaudio. In the parameter file, you will also want to change the parameters to direct to the specaudio (see the parameter file example for LF processing above) to reflect the specaudio files, not the original audio files.

**Code**

1. Open terminal, launch IDL in lfdcs/process (hit return after typing each line of text in the command line below).

```idl
1% cd ~/Projects/Detectors/lfdcs/process
2% idl
IDL> reclassify_autodetections, 'lfdcs_index_file', 'call_library_file'
```

**Example:**

reclassify_autodetections,
'/Volumes/ExternalHD/NEFSC_SC_201511_site4/lfdcs/lfdcs_index_files_index.nc',
'../call_library/clnb_gom9/call_library_gom9.nc'

**Terminal Window**

```
Last login: Mon Feb 21 19:38:09 on ttys000
1% cd ~/Projects/Detectors/lfdcs/process
2% idl
IDL Version 8.4, Mac OS X (darwin x86_64 m64). (c) 2014, Exelis Visual Information Solutions, Inc.
Installation number: 246512.
Licensed for use by: Woods Hole Oceanographic Institution

IDL> reclassify_autodetections, '../call_library/clnb_gom9/call_library_gom9.nc'
% Compiled module: RECLASSIFY_AUTODETECTIONS.

**** Must specify an LFDCS file index and a call library ****

LFDCS reclassification completed!

```

Back to Table of Contents
Manually Reviewing Data

Below are directions for how to open LFDCS to view the spectrograms from the specaudio data, without the processed autodetections/pitch tracks.

You can specify species buttons, so as you are viewing data you can log calls and assign them to a species which you can later export. The species and codes can be found in the Manual Species Codes table below, as well as in the manual_classes.csv document, found in your lfdcs/process folder. In this document, the "Species Code" value is what you can specify in the manual_species=[] parameter. Here, we have added Incorrect, Correct, Unknown, and Unclassified values in the "Species" column to allow for a Correct/Incorrect/Unknown manual analysis scoring (this is the method used in NEFSC daily presence analyses, see protocols described in Appendix B for more information). Likewise, the manual_classes.csv also has a "Call Type Code" column (specified below in the manual_call_type=[] parameter), which can provide further buttons based on species-specific call types, if you are interested in that level of detail and scoring. For every call type specified, there should be the associated species code.

**Manual Species Codes**

<table>
<thead>
<tr>
<th>Species</th>
<th>Species Code</th>
<th>Call type</th>
<th>Call type Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>0</td>
<td></td>
<td>-32767</td>
</tr>
<tr>
<td>Blue whale</td>
<td>1</td>
<td></td>
<td>-32767</td>
</tr>
<tr>
<td>Fin whale</td>
<td>2</td>
<td></td>
<td>-32767</td>
</tr>
<tr>
<td>Fin whale</td>
<td>2</td>
<td>20-Hz pulse</td>
<td>1</td>
</tr>
<tr>
<td>Sei whale</td>
<td>3</td>
<td></td>
<td>-32767</td>
</tr>
<tr>
<td>Bryde’s whale</td>
<td>4</td>
<td></td>
<td>-32767</td>
</tr>
<tr>
<td>Minke whale</td>
<td>5</td>
<td></td>
<td>-32767</td>
</tr>
<tr>
<td>Gray whale</td>
<td>6</td>
<td></td>
<td>-32767</td>
</tr>
<tr>
<td>NA right whale</td>
<td>7</td>
<td></td>
<td>-32767</td>
</tr>
<tr>
<td>NA right whale</td>
<td>7</td>
<td>up call</td>
<td>1</td>
</tr>
<tr>
<td>NA right whale</td>
<td>7</td>
<td>moan</td>
<td>2</td>
</tr>
<tr>
<td>NA right whale</td>
<td>7</td>
<td>gunshot</td>
<td>3</td>
</tr>
<tr>
<td>NP right whale</td>
<td>8</td>
<td></td>
<td>-32767</td>
</tr>
<tr>
<td>Southern right whale</td>
<td>9</td>
<td></td>
<td>-32767</td>
</tr>
<tr>
<td>Species</td>
<td>Code</td>
<td>commands</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Humpback whale</td>
<td>10</td>
<td>-32767</td>
<td></td>
</tr>
<tr>
<td>Bowhead whale</td>
<td>11</td>
<td>-32767</td>
<td></td>
</tr>
<tr>
<td>Beluga whale</td>
<td>12</td>
<td>-32767</td>
<td></td>
</tr>
<tr>
<td>Killer whale</td>
<td>13</td>
<td>-32767</td>
<td></td>
</tr>
<tr>
<td>Walrus</td>
<td>50</td>
<td>-32767</td>
<td></td>
</tr>
<tr>
<td>Bearded seal</td>
<td>51</td>
<td>-32767</td>
<td></td>
</tr>
<tr>
<td>Air gun</td>
<td>97</td>
<td>-32767</td>
<td></td>
</tr>
<tr>
<td>Unknown type B</td>
<td>98</td>
<td>-32767</td>
<td></td>
</tr>
<tr>
<td>Unknown type A</td>
<td>99</td>
<td>-32767</td>
<td></td>
</tr>
<tr>
<td>Correct</td>
<td>9999</td>
<td>-32767</td>
<td></td>
</tr>
<tr>
<td>Incorrect</td>
<td>-9999</td>
<td>-32767</td>
<td></td>
</tr>
<tr>
<td>Unclassified</td>
<td>-32767</td>
<td>-32767</td>
<td></td>
</tr>
</tbody>
</table>

**Code**

1. Open terminal, launch IDL in lfdcs/process (hit return after typing each line of text in the command line below).

   1% cd
   ~/Projects/Detectors/lfdcs/process
   2% idl

2. Manually review data:

   IDL> manual_detections, 'processed_specaudio_folder', 'log_index_file'

**Example:**


**Commands**

- **manual_species**
  To enter species code values that will appear as classification buttons to allow for manual classification of species (e.g., manual_species=[7] as 7 is the code value for North Atlantic right whale OR manual_species=[9999,-9999,0,-32767] which are the four code values for the "Correct", "Incorrect", "Unknown" and "Unclassified" buttons, respectively, that you can use instead of species buttons)

- **manual_call_type**
  To specify the call type within a given species category (e.g., manual_call_type=[1,3] as 1 is the code value for a North Atlantic right whale upcall and 3 is the code value for a North Atlantic right whale gunshot). If no call type is needed (i.e., you are only identifying species or correct/incorrect), you can omit this command).
Terminal Window

```
1% cd ~/Projects/Detectors/lfdcs/process
2% idl
IDL Version 8.4, Mac OS X (darwin x86_64 m64). (c) 2014, Exelis Visual Information Solutions, Inc.
Installation number: 240512.
Licensed for use by: Woods Hole Oceanographic Institution

% Compiled module: MANUAL_DETECTIONS.
% Compiled module: SLASH_CHECK.
% Compiled module: READ_RECORDER_INDEX.
% Loaded DLM: NCF.
% Compiled module: GET_NCF_VARIABLE.
% Compiled module: READ_RECORDER.
% Compiled module: NCF_FILL_FLOAT.
% Compiled module: STRING_TO_JULIAN.
% Compiled module: CALCULATE_JULIAN.
% Compiled module: JULDAY.
% Compiled module: READ_ASCII_DATA.
% Compiled module: TIME_TICKS.
% Compiled module: CALCULATE_GREGORIAN.
% Compiled module: CDAT.
% Compiled module: PLOT_MINOR_DATE_TICKS.
% Compiled module: DISPLAY_IMAGE.
% Compiled module: TEK_COLOR.
% Compiled module: JULIAN_TO_STRING.
% Compiled module: XPBEC.
% Compiled module: YPBEC.
% Compiled module: WINDOW_BUTTONS.
```

LFDCS Output

![Graph showing data with various options available like zoom in, zoom out, add, etc.](image-url)
Viewing/Browsing Automated Detections

Below are directions for how to open a dataset in LFDCS that has already been processed through the detector with a specific call library. The browse_autodetections function can be used to view the spectrogram and pitch tracks of sounds that have been detected and classified by the LFDCS for specific call types (based on a specified call library), and score detections as “correct”, “incorrect”, and “unknown”.

The 'lfdcs_index_file' in the Code section below refers to the index file found in the "lfdcs" subdirectory in the output directory (e.g., /Volumes/ExternalHD/NEFSC_SC_201511_site4/lfdcs/lfdcs_file_index.nc). As a shortcut, you may also just provide the lfdcs subdirectory (e.g., /Volumes/ExternalHD/NEFSC_SC_201511_site4/lfdcs) or the output directory (e.g., /Volumes/ExternalHD/NEFSC_SC_201511_site4).

You may include numerous commands to specify exactly the kind of calls you want to examine, see the Commands section below. For example, to look for fin whale 20-Hz calls on or after 12/10/09, you might use the following commands: start='12/10/09 00:00:00', min_freq=15, max_freq=25, min_duration=0.25, max_duration=1.25.

If you would like to manually classify autodetections, set the "classify" command (e.g., /classify), and specify which species and call types you intend to classify using the "manual_species" and "manual_call_type" commands (e.g., manual_species=[1, 2, 3], manual_call_type=[99, 99, 99]). This will provide a list of species on the right side of the display that an analyst can use to manually identify which species produced the call. This is used to evaluate the performance of the LFDCS or to manually reduce the false detection rate. See the Manual Species Codes table in the previous section for default values. If no call type is needed (i.e. you are only identifying if the detection is correct/incorrect, you can use just manual_species=[9999,-9999,0,-32767] and should omit the manual_call_type command.

<table>
<thead>
<tr>
<th>Code</th>
<th>Commands</th>
</tr>
</thead>
</table>
| 1. Open terminal, launch IDL in lfdcs/process (hit return after typing each line of text in the command line below).  
   1% cd  
   ~/Projects/Detectors/lfdcs/process  
   2% idl | start='MM/DD/YY HH:MM:SS'  
   To specify the date/time to start browsing autodetections in MM/DD/YY HH:MM:SS format (e.g., start='01/20/15 19:30:00') |
| 2. Browse autodetections:  
   IDL> browse_autodetections, 'lfdcs_index_file' | call_family  
   To view all autodetections in a call family (*1=broadband, 2=narrowband) (e.g., call_family=2)  
   *LFDCS has the capacity to process broadband data, but it is still under development and not yet functional with the software. |
| Example: | call_type  
   To view all autodetections of a particular call type (e.g., call_type=[1, 2, 3]). If you have multiple call type values in order you can enter the |
browse_autodetections, /Volumes/ExternalHD/NEFSC_SC_201511_site4/lfdcs', call_family=2, call_type=[15:25], max_mdist=3, /classify, manual_species=[9999,-9999,0,-32767], start='02/01/21 10:12:32'

range using a colon (e.g., instead of call_type=[1,2,3,4,5,6], use call_type=[1:6]).

min_amplitude
To view all autodetections greater than or equal to a specified minimum amplitude (in dB above background) (e.g., min_amplitude=12)

max_amplitude
To view all autodetections less than or equal to a specified maximum amplitude (in dB above background) (e.g., max_amplitude=20)

min_mdist
To view all autodetections greater than or equal to a specified minimum Mahalanobis distance (e.g., min_mdist=1.0)

max_mdist
To view all autodetections less than or equal to a specified maximum Mahalanobis distance (e.g., max_mdist=3.0)

min_freq
To view all autodetections greater than or equal to a specified minimum frequency (in Hz) (e.g., min_freq=200)

max_freq
To view all autodetections less than or equal to a specified maximum frequency (in Hz) (e.g., max_freq=800)

min_duration
To view all autodetections greater than or equal to a specified minimum duration (in seconds) (e.g., min_duration=1.0)

max_duration
To view all autodetections less than or equal to a specified maximum duration (in seconds) (e.g., max_duration=4.0)

/classify
To enable manual classification of each autodetection

manual_species
To enter species code values that will appear as classification buttons to allow for manual classification of species (e.g., manual_species=[7] as 7 is the code value for
North Atlantic right whale OR manual_species=[9999,-9999,0,-32767] which are the four code values for the “Correct”, “Incorrect”, “Unknown” and “Unclassified” buttons, respectively, that you can use instead of species buttons

**manual_call_type**

To specify the call type within a given species category (e.g., manual_call_type=[1,3] as 1 is the code value for a North Atlantic right whale upcall and 3 is the code value for a North Atlantic right whale gunshot). If no call type is needed (i.e., you are only identifying species or correct/incorrect), you can omit this command.

---

**Terminal Window**

```
Last login: Mon Feb 21 16:53:39 on ttys000
% cd ~/Projects/DT/datasets/lids/process
% idl
IDL Version 8.4, Mac OS X (darwin x86_64 n64). (c) 2014, Exelis Visual Information Solutions, Inc.
Installation number: 246512.
Licensed for use by: Woods Hole Oceanographic Institution

IDL> browse_autodetections, './test_dataset/processed/lids', call_family=2, call_type=[15,16,17,19,20,23,24,25], max_adist=3, /classify, manual_species=[9999,-9999,0,-32767], start='03/03/09 10:12:32'
```

% Compiled module: BROWSE_AUTODETECTIONS.
% Compiled module: SLASH_CHECK.
% Compiled module: SYMBOL_CIRCLE.
% Compiled module: READ_LFDCS_FILE_INDEX.
% Loaded DLL: NCF.
% Compiled module: GET_NCF_VARIABLE.
% Compiled module: READ_RECORDER_INDEX.
% Compiled module: READ_LFDCS_CALL_LIBRARY.
% Compiled module: STRIP_FILE_EXTENSION.
% Compiled module: CALCULATE_JULIAN.
% Compiled module: JULDAV.
% Compiled module: READ_ASCII_DATA.
% Compiled module: NCF_FILL_FLOAT.
% Compiled module: STRING_TO_JULIAN.
% Compiled module: READ_LFDCS_AUTODETECTIONS.
% Compiled module: TIME_TICKS.
% Compiled module: CALCULATE_GREGORIAN.
% Compiled module: CALDAT.
% Compiled module: PLOT_MINOR_DATE_TICKS.
% Compiled module: READ_RECORDER.
% Compiled module: DISPLAY_IMAGE.
% Compiled module: CUSTOM1.
% Compiled module: HOME_DIRECTORY.
% Compiled module: XPEPC.
% Compiled module: YPEPC.
% Compiled module: JULIAN_TO_STRING.
% Compiled module: TEK_COLOR.
% Compiled module: WINDOW_BUTTONS.

Back to Table of Contents
**Desktop Buttons**

The following image and descriptions explain the basic functions available once an audio file has been processed with the LFDCS and is opened in the desktop version in order to view automated detections (based on a specified call library). The buttons along the left-hand side of the window are standard in most LFDCS programs, the buttons along the right-hand side of the window are specific to the browse_autodetections function.

*Tip:* Hover cursor over any button in the LFDCS window and scroll forward or back to select that button. This function can be used (rather than repeatedly clicking the mouse or touchpad on the computer) to scroll or page through the detections more easily. *Note:* Hovering over a classification button (e.g., “correct”, “incorrect”, “unknown” or “unclassified”) marks the detections based on the button you are hovering over (i.e., an easy way to scroll through a lot of false detections if you hover over the “incorrect” button). It is easy for the cursor to fall slightly off the button when scrolling. It is good practice to go backwards and verify that detections are being marked, or not marked, how you intend them to be.

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select next detection/pitch track (not a visible button in the image above)</td>
<td>Click on (or hover cursor over the spectrogram window and scroll) the black background anywhere on the right-hand side of the window to navigate to the next automated detection (pitch track).</td>
</tr>
<tr>
<td>Select previous detection/pitch track (not a visible button in the image above)</td>
<td>Click on (or hover cursor over the spectrogram window and scroll) the black background anywhere on the left-hand side of the window to navigate to the next automated detection (pitch track).</td>
</tr>
<tr>
<td>’Page forward’</td>
<td>Click on (or hover cursor over button and scroll) the ’Page forward’ button to move forward to the next section (new window) of the spectrogram that has detections. This allows the analyst to scroll through detections more quickly on a</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'Page backward'</td>
<td>Moves back to the previous section (or viewing window) of the spectrogram that has detections.</td>
</tr>
<tr>
<td>'Zoom in'</td>
<td>Zooms in on the selected pitch track on the time (x) axis.</td>
</tr>
<tr>
<td>'Zoom out'</td>
<td>Zooms out from the selected pitch track on the time (x) axis.</td>
</tr>
<tr>
<td>'Jump'</td>
<td>Jumps to the specified section of the spectrogram/audio file. After clicking, navigate back to the terminal window and enter the desired date and time in the MM/DD/YY HH:MM:SS format.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><strong>Jump to date (mm/dd/yy hh:mm:ss) -&gt; 01/29/16 04:13:58</strong></td>
</tr>
<tr>
<td>'Volume/Speed'</td>
<td>Adjusts volume and playback speed of audio file. After clicking, navigate back to the terminal window and enter the desired volume (on a scale of 1-10) and desired speed. Default values are both 1 whenever a processed deployment is opened from the terminal.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><strong>Volume -&gt; 7</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Speed -&gt; 2</strong></td>
</tr>
<tr>
<td>'Play'</td>
<td>Plays a 5 second clip containing the selected detection (at selected volume and speed).</td>
</tr>
<tr>
<td>'Play range'</td>
<td>Plays a clip selected by the analyst. After clicking, click a point on the spectrogram where range should start, then click a point on the spectrogram where listening range should end. The selected audio range will start playing automatically.</td>
</tr>
<tr>
<td></td>
<td>Note: If a click is made anywhere on the black background before or after the spectrogram, it will be included in the playback.</td>
</tr>
<tr>
<td>'Freq range'</td>
<td>Adjusts the maximum frequency range (y-axis) of the viewing window. After clicking, navigate back to the terminal window and enter the desired maximum frequency in Hz. The minimum frequency will remain 0 Hz.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><strong>Maximum frequency: 600</strong></td>
</tr>
<tr>
<td>'Toggle tracks'</td>
<td>Hides the pitch tracks to reveal the raw spectrogram image (this is convenient especially when determining that a certain pitch track is correctly classifying a sound and is not a false detection). Click the button again to show pitch tracks.</td>
</tr>
<tr>
<td>Button</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'Clip'</td>
<td>Creates a clip selected by the analyst and saves it as a .wav file to the computer. After clicking, click a point on the spectrogram where the sound clip should start, then click a point on the spectrogram where the sound clip should end. Navigate back to the terminal window and enter the desired playback speed/volume and file name (must type out the .wav file extension at the end of the file name for it to save correctly). Selecting 'N' for Normal speed/volume will automatically save the sound file at Speed = 1 and Volume = 1. Selecting 'S' for Selected speed/volume will automatically save the sound file at the speed/volume the analyst set using the 'Volume/Speed' button (e.g., Speed = 2 and Volume = 8). Once the file name has been entered in the terminal window, the file is saved in your lfdcs/process directory. To save to an alternate location, the file path can be inserted in the file name (i.e. /Users/ComputerName/Desktop/Clips/WaveName.wav) Example: <strong>Save a (N)ormal speed/volume or currently (S)elected speed/volume? (N/S) N</strong> Name of WAV file -&gt; <strong>SBNMS_humpback-upsweeps_021416_053947.wav</strong></td>
</tr>
<tr>
<td>'Auto play'</td>
<td>Automatically plays a 5 second clip containing each detection as the analyst scrolls through them. Click again to turn autoplay off.</td>
</tr>
<tr>
<td>'Auto class'</td>
<td>Displays the call type classification (name and call type number as specified in the call library), Mahalanobis distance, and probability of the detection match to the call type for the selected detection at the top of the spectrogram. Example: <strong>Auto class: Humpback whale downsweep (15), mdist = 2.1, prob = 0.9999</strong></td>
</tr>
<tr>
<td>'Quit'</td>
<td>Quits the LFDCS program, allowing the analyst to then close out of the desktop window and terminal. <strong>Use this button first to properly exit the program, then click on the &quot;x&quot; button on the top left corner of the window.</strong> The LFDCS window will not close properly if the “Quit” button is not clicked before the “x” button.</td>
</tr>
<tr>
<td>'Correct'</td>
<td>Click on (or hover cursor over and scroll) the red 'Correct' button on the right-hand side of the window to mark the currently selected (colored) pitch track as a correct detection for that call type. The program will then automatically move forward to the next automated detection (pitch track).</td>
</tr>
<tr>
<td>Button</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Correct</td>
<td>Hovering the cursor over the 'Correct' button and scrolling will continue to mark the following pitch tracks as Correct detections until the analyst stops scrolling.</td>
</tr>
<tr>
<td>Incorrect</td>
<td>Click on (or hover cursor over and scroll) the green 'Incorrect' button on the right-hand side of the window to mark the currently selected (colored) pitch track as an incorrect detection for that call type. The program will then automatically move forward to the next automated detection (pitch track).</td>
</tr>
<tr>
<td>Unknown</td>
<td>Click on (or hover cursor over and scroll) the blue 'Unknown' button on the right-hand side of the window to mark the currently selected (colored) pitch track as an unknown detection for that call type. The program will then automatically move forward to the next automated detection (pitch track). This button can be used to mark sounds that the analyst is unsure about. This allows the analyst to go back and review Unknown detections easily at a later point.</td>
</tr>
<tr>
<td>Unclassified</td>
<td>Click on (or hover cursor over and scroll) the white 'Unclassified' button on the right-hand side of the window to mark the currently selected (colored) pitch track as an unclassified detection for that call type. The program will then automatically move forward to the next automated detection (pitch track). This button can be used if the analyst mistakenly marks a pitch track as 'Correct', 'Incorrect', or 'Unknown' and wants to go back and reset that pitch track as 'Unclassified'.</td>
</tr>
</tbody>
</table>

Note: If you have already analyzed a dataset and want to browse through detections that you have only marked correct or unknown, for example, you can add select_manual_species with the correct/incorrect/unknown/unclassified classification codes you want to look through (e.g., select_manual_species=[9999, 0]). This command only works in conjunction with manual_species also being included (can choose to have all buttons included in manual_species, if you want to change the classification of what you are browsing). Example of full line of code to view only correct or unknown marked detections for the call types specified:

```python
browse_autodetections, '/Volumes/ExternalHD/NEFSC_SC_201511_site4/lfdcs', call_family=2, call_type=[15,16,17,18,19,20,23,24,25], max_mdist=3, /classify, manual_species=[9999,-9999,0,-32767], select_manual_species=[9999,0]
```
Data Export
Exporting Automated Detections

Below are directions for how to export a .csv file of autodetections and their associated attributes. The exported sheet contains header information for the metadata of the exported deployment, as well as a description of each of the columns. Following the header, there is one row of data per detection that falls within the parameters specified (similar to the selection table logs in Raven). The default columns that are included in the exported sheet are: call type, the detection start time (as seconds since the start date given in the original parameter file to process the data), the detection end time (as seconds since the start date), times of the pitchtrack, duration (seconds), minimum frequency (Hz), maximum frequency (Hz), bandwidth (Hz), amplitude (dB relative to background), and mahalanobis distance.

You may include several commands to specify exactly the kind of calls you want to export (see Basic Commands below). For example, you can specify the call type numbers you want to export (e.g., [1, 2, 3]), and any classification provided from the call library.

<table>
<thead>
<tr>
<th>Code</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Open terminal, launch IDL in lfdfs/process (hit return after typing each line of text in the command line below).&lt;br&gt;1% cd ~/Projects/Detectors/lfdfs/process&lt;br&gt;2% idl</td>
<td>sdate= 'MM/DD/YY HH:MM:SS'&lt;br&gt;To specify the date/time to start exporting autodetections in MM/DD/YY HH:MM:SS format (e.g., sdate='01/20/15 19:30:00')</td>
</tr>
</tbody>
</table>
| 2. Process autodetection table as a .csv file:<br>IDL> export_autodetections,
'lfdfs_index_file', call_type,
'exported_autodetections_sheet_name.csv' | edate= 'MM/DD/YY HH:MM:SS'<br>To specify the date/time to end exporting autodetections in MM/DD/YY HH:MM:SS format (e.g., edate='01/20/15 23:30:00') |
| lfdfs_index_file refers to the index file found in the "lfdfs" subdirectory in the output directory (e.g., /Volumes/ExternalHD/NEFSC_SC_201511_site4/lfdfs/lfdfs_file_index.nc). As a shortcut, you may also just provide the lfdfs subdirectory (e.g., /Volumes/ExternalHD/NEFSC_SC_201511_site4/lfdfs) or the output directory (e.g., /Volumes/HARDDRIVE_NAME/NEFSC_SC_201511/NEFSC_SC_201511_site4).Sheets automatically export to your lfdfs/process directory; if you would like this to go into another directory, specify the path in the output file name. | /narrowband<br>To export only narrowband autodetections (call family = 2); this is the default behavior |
| */broadband<br>To export only broadband autodetections (call family = 1) | *LFDCS has the capacity to process broadband data, but it is still under development and not yet functional with the software. |
| [5,6,7]<br>To export specific call types using the respective code values. Note: Call types are specified without a command label in this program. | max_mdist |
To export all autodetections less than or equal to a specified maximum Mahalanobis distance (e.g., max_mdist=3.0)

/manuall
To also export associated manual classification information for all automated detections that are exported

/textdate
To export date/time in text format with fractional seconds

/list
To export the top 3 call types; this command adds additional columns to the output which give the posterior probability and Mahalanobis distance for the first three call types for that pitch track. Without /list you get just the top (first) call type.

**North Atlantic Right Whale Example:**
export_autodetections,
/Volumes/ExternalHD/NEFSC_SC_201511_site4/; [5,6,7,8,9],
/Users/Desktop/NARW_LFDCS_AUTODETECTIONS/NEFSC_SC_201511_site4_RW_autodetections.csv; /list

**Sei Whale Example:**
export_autodetections,
/Volumes/ExternalHD/NEFSC_SC_201511_site4/; [1,2,3],
/Users/Desktop/SEI_LFDCS_AUTODETECTIONS/NEFSC_SC_201511_site4_SW_autodetections.csv

**Fin Whale Example (decimated data):**
export_autodetections,
/Volumes/ExternalHD/NEFSC_SC_201511_site4/; [1],
/Users/Desktop/FIN_LFDCS_AUTODETECTIONS/NEFSC_SC_201511_site4_FW_autodetections.csv

**Blue Whale Example (decimated data, higher mdist):**
export_autodetections,
/Volumes/ExternalHD/NEFSC_SC_201511_site4/; [2,3,4],
/Users/Desktop/BLUE_LFDCS_AUTODETECTIONS/NEFSC_SC_201511_site4_BW_autodetections.csv

Note: Call types for humpback, sei, and right whales are specific to the ‘clnb_gom9’ call library.

Call types for fin and blue whales are specific to the ‘clnb_gomlf_blue’ call library.
**Humpback Example:**

```
extport_detections,
/Volumes/ExternalHD/NEFSC_SC_201511_site4/,
[15,16,17,18,19,20,23,24,25],
/Users/Desktop/HUMPBACK_LFDCS_AUTODETECTIONS/NEFSC_SC_201511_site4_HW_autodetections.csv'
```

**Terminal Window**

```
Last login: Fri Feb 2E 12:19:42 on ttya000
% cd ~/Projects/Detectors/lfpcs/process
% idl
IDL Version 5.4, Mac OS X (darwin x36_64 m64). (c) 2014, Exelis Visual Information Solutions, Inc.
Installation number: 246512.
Licensed for use by: Woods Hole Oceanographic Institution

IDL> export_autodetections, /Volumes/NEFSC_22/NEFSC_SC_201511/NEFSC_SC_201511_CH4/,
[5,6,7,8,9], '/Users/phs/D
desktop/NARW_LFDCS_AUTODETECTIONS/NEFSC_SC_201511_CH4_RW_autodetections.csv', /list
% Compiled module: EXPORT_AUTODETECTIONS.
% Compiled module: SLASH_CHECK.
% Compiled module: READ_LFDCS_FILE_INDEX.
% Loaded DLM: NDF.
% Compiled module: BSET_XCODE_VARIABLE.
% Compiled module: READ_LFDCS_CALL_LIBRARY.
% Compiled module: STRIP_FILE_EXTENSION.
% Compiled module: CALCULATE_JULIAN.
% Compiled module: JUDAY.
% Compiled module: READ_LFDCS_ALL_AUTODETCTIONS.
% Compiled module: JULIAN_TO_STRING.
% Compiled module: CALCULATE_GREGORIAN.
% Compiled module: CALDAT.
Reading autodetections: 00% Compiled module: READ_LFDCS_AUTODETECTIONS.
% Compiled module: STRING_TO_JULIAN.
% Compiled module: JUDAY.
% Compiled module: 100% 20% 50% 40% 50% 60% 70% 80% 100%
```

**Resulting File Location**

![Resulting File Location](image-url)
## Exported Automated Detections

### Table

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Study</td>
<td>NEFSC_SC_2015111_DA</td>
<td>Location</td>
<td>Charleston, SC</td>
<td>Originator</td>
<td>Geneve</td>
<td>Platform</td>
<td>Meeting</td>
<td>Instrument</td>
<td>POPUP</td>
<td>Column 1=call type</td>
<td>5 = Right wha...</td>
<td>9 = Right...</td>
<td>11 =...</td>
<td>12 =...</td>
<td>13 =...</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

### Notes
- Columns 2-11 contain various detection and call type information.
- Columns 12-22 provide detailed information about the detections.
- Columns 23-25 offer additional details related to the detections.

---

*Back to Table of Contents* 60
Exporting Summary Sheets of Autodetections

Below are directions for how to export a .csv file with a summary of the autodetections from a dataset that has been processed by the detector with a specific call library. With the correct code, the resulting .csv file will include information for the number of each call type detected for each specified time bin and specified parameters of an acoustic deployment. Each exported .csv file has header information with metadata about the deployment (stored from the original parameter file), and a list describing the column names and contents. The columns are as follows: start date, start time, end date, end time. There is then a column for each call type specified to be included (with the specified parameters, e.g., max_mdist=3), with a tally for the number of detections in that time bin (between start and end date/times). The last column is a “sum” column which gives the total number of detections for all of the call types called for.

Note: The .csv file can then be used as a daily/hourly/etc. 'Presence Sheet' to provide a streamlined way of viewing basic detection summaries and recording analysis results including when species were found to be present, timestamps for positive or possible detections, and notes (see Examples of Daily Presence Sheets section).

**Code**

1. Open terminal, launch IDL in lfdcs/process (hit return after typing each line of text in the command line below).

   ```
 1% cd ~/Projects/Detectors/lfdcs/process
 2% idl
   ```

2. Process new summary sheet as a .csv file:

   ```
 IDL>
 export_summary_autodetections, 'lfdcs_index_file', [call_types],
 'exported_autodetections_sheet_name.csv', sdate='MM/DD/YY
 HH:MM:SS', edate='MM/DD/YY
 HH:MM:SS', BinNumber, /timeBin
   ```

You may include other commands (in addition to the ones listed in the column to the right) to correspond to and have summary sheets that only include detections used for a daily presence analysis. For example, call types (e.g., [5,6,7,8]) and maximum mahalanobis distance (e.g., max_mdist=3.0).

**Commands**

- `sdate= 'MM/DD/YY HH:MM:SS'`
  To specify the date/time at which to start summarizing the data (e.g., `sdate= '01/15/20
  00:00:00'`).

- `edate= 'MM/DD/YY HH:MM:SS'`
  To specify the last date/time to be included in the summary sheet (e.g., `edate=
  '04/25/20 00:00:00'`). The 'edate' command must be included to avoid an endless exported sheet for dates over which there is no data (file will never finish writing).

- `BinNumber`
  This represents the amount of units to summarize the specified time bin (e.g., 24.0 when used with the /timeBin code /hours' means a 24 hour period, 30 when used with /timeBin code /minutes' would look at 30 minute summaries).

- `/timeBin`
  To specify the time period over which the data is summarized. This command can be written as /seconds, /minutes, /hours, /days, or /months and the number of these to summarize over can be specified using the BinNumber command (e.g., /days, 5.0 would summarize detections for every 5 days).
Note: The following examples will export daily presence summary sheets which were most commonly used for analyses conducted at NEFSC/WHOI.

**North Atlantic Right Whale Example:**
```
export_summary_autodetections,
'/Volumes/ExternalHD/NEFSC_SC_201511_site4/lfdcs', [5,6,7,8,9],
'NEFSC_SC_201511_site4_right_daily_det.csv',
24.0, max_mdist=3.0, sdate= '11/01/15 00:00:00',
edate = '04/30/16 0:00:00', /hours
```

**Sei Whale Example:**
```
export_summary_autodetections,
'/Volumes/ExternalHD/NEFSC_SC_201511_site4/lfdcs', [1,2,3],
'NEFSC_SC_201511_site4_sei_daily_det.csv',
24.0, max_mdist=3.0, sdate= '11/01/15 00:00:00',
edate = '04/30/16 0:00:00', /hours
```

**Fin Whale Example (decimated data):**
```
export_summary_autodetections,
'/Volumes/ExternalHD/NEFSC_SC_201511_site4/lfdcs', [1],
'NEFSC_SC_201511_site4_fin_daily_det.csv',
24.0, max_mdist=3.0, sdate= '11/01/15 00:00:00',
edate = '04/30/16 0:00:00', /hours
```

**Blue Whale Example (decimated data, higher mdist):**
```
export_summary_autodetections,
'/Volumes/ExternalHD/NEFSC_SC_201511_site4/lfdcs', [2,3,4],
'NEFSC_SC_201511_site4_blue_daily_det.csv',
24.0, max_mdist=5.0, sdate= '11/01/15 00:00:00',
edate = '04/30/16 0:00:00', /hours
```

**Humpback Example:**
```
export_summary_autodetections,
'/Volumes/ExternalHD/NEFSC_SC_201511_site4/lfdcs', [15,16,17,18,19,20,23,24,25],
'NEFSC_SC_201511_site4_humpback_daily_det .csv', 24.0, max_mdist=3.0, sdate= '11/01/15
00:00:00', edate = '04/30/16 0:00:00', /hours
```

Note: Call types for humpback, sei, and North Atlantic right whales are specific to the ‘clnb_gom9’ call library.

Call types for fin and blue whales are specific to the ‘clnb_gomlf_blue’ call library.
Terminal Window

Last login: Mon Feb 21 21:11:35 on ttys000
1% cd ~/Projects/Detectors/idfcs/process
2% idl

IDL Version 6.4, Mac OS X (darwin x86_64 m64), (c) 2014, Exelis Visual Information Solutions, Inc.
Installation number: 245512.
Licensed for use by: Woods Hole Oceanographic Institution

IDL> export_summary_autodetections, '/Volumes/NEFSC_22/NEFSC_SC_201514/NEFSC_SC_201514_C141', [5:6,7:9], 'NEFSC_SC_201514_site4_right_daily_csv.csv', 24.0, max_dist=3.0, edate= '11/01/15 00:00:00', edate = '04/30/16 00:00:00'

% Compiled module: EXPORT_SUMMARY_AUTODETECTIONS.
% Compiled module: SLASH_CHECK.
% Compiled module: READ_LFDCS_FILE_INDEX.
% Loaded DLL: NEW.
% Compiled module: GET_NCOF_VARIABLE.
% Compiled module: READ_LFDCS_CALL_LIBRARY.
% Compiled module: STRIP_FILE_EXTENSION.
% Compiled module: CALCULATE_JULIAN.
% Compiled module: JULDAY.
% Compiled module: READ_LFDCS_ALL_AUTODETECTIONS.
% Compiled module: STRING_TO_JULIAN.
% Compiled module: JULIAN_TO_STRING.
% Compiled module: CALCULATE_DEGREE.
% Compiled module: CALDAT.

Reading autodetections: 100% Compiled module: READ_LFDCS_AUTODETECTIONS.
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

IDL>
Examples of Daily Presence Sheets

Daily Presence Sheets will export as .csv files. Analysts can then manually enter additional columns for tracking detections and adding notes (outside of the lfdcs netcdf files). See Appendix B for more information. The examples below shows the following added columns:

- ‘Manual_Review’ (0=not present, 1=present, 2=possibly present)
- ‘True_Tally’ (number of positive detections determined for a given day)
- ‘True_Tally_Timestamp’ (exact timestamp of the true detection(s))
- ‘Unknown_Timestamp’ (exact timestamp of unknown detection(s))
- ‘Suggested_Daily_Presence’ (if conservative protocol for daily presence does not allow that day to be marked as “present”, this column can aid for a final presence score for that day, if following different criteria.)
- ‘Notes’ (analyst notes, e.g., the detection(s), day, noise conditions, additional species present)

See the following examples of Daily Presence Sheets for column headers that can be used for daily presence analysis of the five species. These are examples of columns manually entered to the summary autodetection sheets that are exported by lfdcs.

Note: The following suggestions and examples correspond with daily presence summary sheets which were most commonly used for analyses conducted at NEFSC/WHOI.

North Atlantic right whale

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8/14/2020</td>
<td>5:00:00</td>
<td>8/15/2020</td>
<td>5:00:00</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>33</td>
<td>0</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>8/16/2020</td>
<td>5:00:00</td>
<td>8/17/2020</td>
<td>5:00:00</td>
<td>11</td>
<td>20</td>
<td>3</td>
<td>102</td>
<td>1</td>
<td>137</td>
<td>2</td>
<td>2</td>
<td>00:01; 00:02</td>
<td>00:05</td>
<td>YES</td>
<td>undetected upcall at 00:03</td>
</tr>
<tr>
<td>4</td>
<td>8/17/2020</td>
<td>5:00:00</td>
<td>8/18/2020</td>
<td>5:00:00</td>
<td>4</td>
<td>10</td>
<td>1</td>
<td>68</td>
<td>0</td>
<td>83</td>
<td>2</td>
<td>2</td>
<td>00:01; 00:02</td>
<td>00:05</td>
<td>YES</td>
<td>undetected upcall at 00:03</td>
</tr>
</tbody>
</table>

EST time zone for recorder set for GMT
### Sei whale

<table>
<thead>
<tr>
<th>Start Date</th>
<th>Start Time</th>
<th>End Date</th>
<th>End Time</th>
<th>Call Type 1</th>
<th>Call Type 2</th>
<th>Call Type 3</th>
<th>Sum</th>
<th>Manual Review</th>
<th>True Timestamp</th>
<th>Unknown Timestamp</th>
<th>Suggested Daily Presence</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/8/2017</td>
<td>00:00:00</td>
<td>12/9/2017</td>
<td>00:00:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>12/9/2017</td>
<td>00:00:00</td>
<td>12/10/2017</td>
<td>00:00:00</td>
<td>24</td>
<td>2</td>
<td>0</td>
<td>26</td>
<td>2</td>
<td>YES</td>
<td>YES</td>
<td>singlets very likely sei whales</td>
<td></td>
</tr>
<tr>
<td>12/10/2017</td>
<td>00:00:00</td>
<td>12/11/2017</td>
<td>00:00:00</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>1</td>
<td>12:00:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/11/2017</td>
<td>00:00:00</td>
<td>12/12/2017</td>
<td>00:00:00</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>04:56:05</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Fin whale

<table>
<thead>
<tr>
<th>Start Date</th>
<th>Start Time</th>
<th>End Date</th>
<th>End Time</th>
<th>Call Type 1</th>
<th>Sum</th>
<th>Manual Review</th>
<th>True Timestamp</th>
<th>Unknown Timestamp</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/6/2019</td>
<td>09:00:00</td>
<td>10/6/2019</td>
<td>10:00:00</td>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>do not need to check hours with less than 29 detections</td>
</tr>
<tr>
<td>10/6/2019</td>
<td>10:00:00</td>
<td>10/6/2019</td>
<td>11:00:00</td>
<td>31</td>
<td>31</td>
<td>1</td>
<td></td>
<td></td>
<td>do not need to mark true_timestamp</td>
</tr>
<tr>
<td>10/6/2019</td>
<td>11:00:00</td>
<td>10/6/2019</td>
<td>12:00:00</td>
<td>45</td>
<td>45</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/6/2019</td>
<td>12:00:00</td>
<td>10/6/2019</td>
<td>13:00:00</td>
<td>65</td>
<td>65</td>
<td>2</td>
<td>12:31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Blue whale

Humpback whale

How To Score Daily Presence for Different Species

Appendix B
Exporting Metadata from Processed LFDCS Datasets

It may be useful to pull out metadata from already processed LFDCS datasets to confirm the correct recorder/deployment was processed if any discrepancies are noticed or for general QA/QC.

The same line of code can be used to pull metadata from an .nc file from the specaudio folder or the lfdcs folder (note, enter your first line of code to direct into the lfdcs folder instead of the specaudio folder). The output from this will give all the parameters that were used to process the file, as well as the name of the call library and its last modification date.

**Code for exporting specaudio metadata**

1. Plug in drive that the LFDCS outputs were processed onto.

2. Open terminal, but do not put in normal starting code (cd ~/Projects/Detectors/lfdcs/process). Instead, type the following code – filling in the correct drive and file names for the target dataset:

   1% cd /Volumes/ExternalHD/NEFSC_SC_201511_site4/specaudio/2015_11
   2% idl

3. Pick any .nc file in the specaudio folder that was specified in the previous line of code and insert it into this code between the straight quotation marks:

   IDL> ncdf_info, 'mooring_NEFSC_SC_201511_site4_151104_000000.nc'

A lot of information will come up – some things to find particularly useful are 'original_file' (specifies the original sound file that was used to create the .nc file). The project names should match. For multi-channel data (MARUs), 'original_channel' can also be important to make sure the right channel was processed.

See example terminal windows on the following pages.
Terminal Window for specaudio Output

Last login: Mon Feb 21 21:13:38 on ttys000
1% cd /Volumes/NEFSC_22/NEFSC_SC_201511/NEFSC_SC_201511_CH4/specaudio/2015_11
2% idl
IDL Version 8.4, Mac OS X (darwin x86_64 m64). (c) 2014, Exelis Visual Information Solutions, Inc. Installation number: 246512.
Licensed for use by: Woods Hole Oceanographic Institution

IDL> ncdf_info, 'mooring_MARU105_popup_4_151104_100000.nc'
% Compiled module: NCDF_INFO.
% Loaded DLM: NCDF.
NetCDF File
--------------
Dimensions: 3
Variables: 4
Global attributes: 22
Unlimited dimension: NONE

--------------
0: n (1800000)
1: nt (14062)
2: nf (256)

Global attributes
------------------
comments: Recorder data and associated spectrogram
experiment: NEFSC_SC_201511_CH4
location: Charleston SC
originator: Genevieve
platform_type: Mooring
platform_id: MARU105
instrument_type: POPUP
instrument_id: 4
sampling_rate_HZ: 2000.0000
nsamples: 1800000
actual_start_datetime: 11/04/15 10:00:00 0.0000000
actual_end_datetime: 11/04/15 10:14:59 0.9995000
start_date: 01/01/06 00:00:00
start_time_seconds: 3.1055760e+00
end_time_seconds: 3.1055880e+00
time_zone: EST
original_file: /Volumes/stellwagen/ACOUSTIC_DATA/BOTTOM_MOUNTED/NEFSC_SC/NEFSC_SC_201511/Charleston_AIffs_EST/77520_Charleston01_802K_M07_multi_UTCh5_20151104_101500.aiff
original_channel: 1
spectrogram-frame: 512
spectrogram-overlap: 0.75000000
window_function: Hamm
spectrogram-smoothing: Yes
Code for exporting lfdcs metadata

1. Plug in drive that the LFDCS outputs were processed onto.

2. Open terminal, but do not put in normal starting code (cd ~/Projects/Detectors/lfdcs/process). Instead, type the following code – filling in the correct drive and file names for the target dataset:

```
1% cd /Volumes/ExternalHD/NEFSC_SC_201511_site4/lfdcs/2015_11
2% idl
```

3. Pick any .nc file in the specaudio folder that was specified in the previous line of code and insert it into this code between the straight quotation marks:

```
IDL> ncdf_info, 'lfdcs_mooring_NEFSC_SC_201511_site4_151104_000000.nc'
```

A lot of information will come up – some things to find particularly useful are 'original_file' (specifies the original sound file that was used to create the .nc file). The project names should match. For multi-channel data (MARUs), 'original_channel' can also be important to make sure the right channel was processed.

See example terminal windows on the following pages.
Terminal Window for Ifdcs Output

```
Last login: Fri 25 11:59:50 on ttya000
$ cd /Volumes/NEFSC_33/NEFSC_33_201511/NEFSC_33_201511_04/Ifdcs/2015_11
$ lsl
IDL Version 8.4, Mac OS X (darwin x86_64 mb) (c) 2014, Exelis Visual Information Solutions, Inc.
Installation number: 245512.
Licensed for use by: Woods Hole Oceanographic Institution

IDL> ntdf_info, 'Ifdcs_processing.wav.005_popup_4.15104_100000.nc'
X Compiled module: NDEF_INFO.
X Linked DLL: NDF.
NDEC File

Dimensions: 3
Variables: 20
Global attributes: 47
Unlimited dimension: NONE

Dimensions

0: n (125004)
1: x (8)
2: y (1024000)

Global attributes

comments: LFDCS-generated pitch tracks, call attributes, and classifications for all automated call detections
platform_id: RA0001
platform_type: Recording
location: Charleston SC
originator: Oceanview
instrument_type: FUPUP
instrument_id: 4
time_zone: EST
index_file: species/audio/recorder_index.nc
sampling_rate_hz: 20000.00
frame: 812
crit_trip: 0.35000000
spectrogram_duration_seconds: 33.000000
pitch_tracking_window_seconds: 25.000000
max_recognition_duration: 0.25000000
max_recognition_duration: 0.25000000
min_max_amplitude_dB: 12.000000
blinking_time_seconds: 0.200000
blinking_frequency_hz: 50.000000
noise_reduction_window_seconds: 0.000000
chirp_segment_spamhz: 150.000000
```

Back to Table of Contents
Variables
8: detection_line (DOUBLE; n)
   long_name: start time of call
   units: seconds since start date
   start_date: 01/01/00 00:00:00
1: call.family (INT; n)
   long_name: family of call
   units: none
   value1: broadband sound
   value2: frequency modulated or tone signal
2: call.start (LONG; n)
   long_name: starting index of call in track file
   units: none
3: call.n (INT; n)
   long_name: number of pitch track points
   units: none
4: duration (FLOAT; n)
   long_name: duration of call
   units: seconds
5: minfreq (FLOAT; n)
   long_name: minimum frequency of call
   units: Hz
6: maxfreq (FLOAT; n)
   long_name: maximum frequency of call
   units: Hz
7: avg_amplitude (FLOAT; n)
   long_name: average amplitude of call
   units: dB relative to running average
8: avfreq (FLOAT; n)
   long_name: amplitude-weighted average frequency
   units: Hz base 2
9: avfreq_stdev (FLOAT; n)
   long_name: amplitude-weighted frequency variation (sweep proxy)
   units: Hz base 2
10: mpt_x (FLOAT; n)
   long_name: amplitude-weighted time variation (duration proxy)
   units: seconds
11: slope (FLOAT; n)
   long_name: amplitude-weighted slope of call
   units: octaves per second
12: mpt_x (FLOAT; n)
   long_name: amplitude-weighted slope of first third of call
   units: octaves per second
13: mpt_x (FLOAT; n)
   long_name: amplitude-weighted slope of middle third of call
   units: octaves per second
14: mpt_x (FLOAT; n)
   long_name: amplitude-weighted slope of last third of call
   units: octaves per second
15: bp_a_slope (FLOAT; n)
   long_name: slope of average amplitude of broadband sound after peak amplitude
   units: dB per second
16: bp_a_slope (FLOAT; n)
   long_name: slope of change in amplitude with frequency between first and last FFT in broadband sound
   units: dB per octave
17: callgroup_auto (INT; n)
   long_name: automatic classification of call type group
   units: none
18: mpt_x (FLOAT; n)
   long_name: mahalanobis distance from autoclassified group
   units: none
19: mpt_x (FLOAT; n)
   long_name: relative posterior probability of membership in autoclassified group
   units: none
20: callgroup_auto (INT; n)
   long_name: top autoclassified classification groups
   units: none
21: mpt_x (FLOAT; n)
   long_name: top autoclassified distances from top autoclassified groups
   units: none
22: mpt_x (FLOAT; n)
   long_name: relative posterior probabilities of membership in top autoclassified groups
   units: none
23: mpt_x (INT; n)
   long_name: manually classified species producing call
   units: none
   values: 0: unclassified
   values: 1: Blue whale
   values: 2: Fin whale
   values: 3: Humpback whale
   values: 4: Bowhead whale
24: mpt_x (INT; n)
   long_name: manually classified within-species call type
   units: none
25: calltime (DOUBLE; ntrack)
   long_name: pitch track time
   units: seconds since start date
   start_date: 01/01/00 00:00:00
26: call_freq (FLOAT; ntrack)
   long_name: pitch track frequency
   units: Hz
27: call_lag (FLOAT; ntrack)
   long_name: lag of call along pitch track
   units: dB relative to running average
Appendix A: Parameter File

To process a dataset with LFDCS, you must create a parameter file that contains the metadata and parameters on how to process. This must be created for any processing run on a recorder. The parameter file has two main sections, the first half leading up to "CallLibraryFileBB" contains parameters that you may change in order to process your files correctly with the appropriate metadata. The parameters below "CallLibraryFileBB" contain all of the settings that have been tested and selected for the best results for the LFDCS. It is not recommended to change these.

On the following page, you'll find a screenshot of an example parameter file. Following that is the list of parameters with their definitions.
Example of Parameter File

This is an example of a parameter file that a user would build prior to processing a new dataset in LFDCS. See Processing Datasets section for more detail.

Experiment: Stellwagen Bank test dataset

Indir: /Users/psp/Projects/Detectors/lfdc/processed/dataset

StartDate: 01/01/70 00:00:00

PlatformType: naed_baby

InstrumentType: NARU

FileExtension: wav

FileFormat: WAV

FileDateSpec: YYYYMMDD_hhmmss

Originator: Sofie Van Parijs

Location: Stellwagen Bank National Marine Sanctuary

ResampleRate: 2000.0

FileDuration: 1000.0

Frame: 512

Overlap: 0.75

Smooth: 1

CallLibraryFile: /Users/psp/Projects/Detectors/lfdc/call_library/cln_b_wav7/call_library_wav7.nc

CallLibraryFile2: /Users/psp/Projects/Detectors/lfdc/call_library/cbb_gw7/call_library_gw7.nc

DetectionFileDuration: 5.0

Scale: 0.0030

Offset: -180.0

SpectrogramDuration: 30.0

PitchTrackingWindow: 25.0

NoiseReductionWindow: 50.0

AvgFFTLowThreshold: -10.0

AvgFFTHighThreshold: 18.0

AvgFDTDurationLimit: 300.0

BB_PrThreshold: 5.0

BB_PtThreshold: 1.5

BB_GtThreshold: 5.0

BB_GtDuration: 4.8

BB_GvDuration: 300.0

BB_DetectionThreshold: 9.0

BB_MinTotalSpan: 200.0

BB_MinBroadband: 0.125

DetectionThreshold: 10.0

SignalGradientThreshold: 15.0

DistanceWeighting: 20.0

ManCallDuration: 0.25

MainAmplitude: 18.0

BlankingTime: 0.25

BlankingFreq: 20.0

Call: 1
Parameters (in order as they appear in parameter file)

Note: Parameters that have (metadata) after the explanation indicate parameters that contain text to help you identify information about the dataset being processed, and do not have any effect on how the detector is run.

Experiment: A description of the study from which the recorder data comes (metadata).

Indir: Input directory where all raw audio data resides.

Outdir: Output directory in which subdirectories “specaudio” and “lfdcs” will be created and into which all output NetCDF files will be placed.

StartDate: Reference date in MM/DD/YY HH:MM:SS text format giving date/time from which all times will be measured. Recommended to use a generic start date such as 01/01/70 00:00:00. You may use any time that predates the recordings, but best to keep consistent.

PlatformType: The type of platform from which the data come (e.g., mooring, glider) (metadata).

PlatformID: An identifier for the specific platform used (metadata).

InstrumentID: An identifier for the channel to read. For multichannel data, this directs which channel to process (e.g. 5 in multichannel data will process the 5th channel). For single channel data, this can be set to 1.

InstrumentType: The type of instrument with which the data was collected (e.g., HARU, AMAR, AURAL, DMON, POPUP). For the instrument types listed, this tells LFDCS how to read the audio format, and you do not need to include the FileExtension, FileFormat, or FileDateSpec parameters below. If you have a generic wave or aiff file, use the following three parameters. This parameter is primarily for legacy recorders such as the ones listed in e.g. above. This can be considered metadata if the FileExtension, FileFormat, and FileDateSpec parameters are specified.

FileExtension: The file extension listed for the raw audio being read (e.g., if raw audio files end with “.wav”, then set FileExtension to wav).

FileFormat: The format of the raw audio files. These are specific to file formats and identify which audio reader file LFDCS should use. In most cases, possibilities are: WAV (for 16-bit wave files), AIF (for aiff files), WAV24 (for 24-bit wave files), WAV32 (for 32-bit wave files), or NETCDF (for specaudio files). If you have additional formatted audio files that are unable to be processed, get in touch with Mark to see if he can create a custom script to read your files.

FileDateSpec: A string indicating the format of the date/time encoded in the raw audio filenames, see list below for values. For special characters or any leading numeric/alphabetic characters to ignore, use an asterisk (*). You may include any separating digits such as a period, underscore, or dash (as it appears in the sound file name) to help direct lfdcs to the correct character stream, see examples of file names below. A string may contain any of the following values:

Y: year
M: month
D: day  
h: hour  
m: minute  
s: second  
f: fractions of seconds expressed in milliseconds  
u: fractions of seconds expressed in microseconds  
N: abbreviated month name (e.g., Jan, Feb, Mar)  
S: seconds since midnight, January 1, 1970  
X: any single character  
x: any single character  
*: any group of characters

Example:  
For raw audio files that are in WAV format and have a filename that looks like this: audio_012015_131500-gom.wav, use the following:  
FileExtension: wav  
FileFormat: WAV  
FileDateSpec: _MMDDYY_HHMMSS-  
The date/time in the filename above would be interpreted as January 20, 2015 at 13:15:00.

Example:  
For raw audio files that are in 24-bit WAV format and have a filename that looks like this: audio$jan20-2015-1315$gom.wav, use the following:  
FileExtension: wav  
FileFormat: WAV24  
FileDateSpec: $NNNDD-YYYY-HHMM$  
The date/time in the filename above would be interpreted as January 20, 2015 at 13:15:00.

Originator: Person providing/collecting the data *(metadata)*.

Location: Location of the study. Should not contain any commas (,) or special characters as this might produce an error in the processing *(metadata)*.

TimeZone: Time zone in which date/times encoded in raw audio filenames are reported (e.g, UTC) *(metadata)*.

ResampleRate (optional; samples per second): Specify resample rate if desired. Original sample rate is taken from the input audio files. A low-pass anti-alias filter is also used when resampling.

FileDuration (seconds): Duration of a single NetCDF file audio/spectrogram file in the “specaudio” subdirectory. If original recorder files are longer than this, they will be broken up into smaller NetCDF files. Will not allow small raw files to be compiled into larger NetCDF files.

Frame: Number of samples over which a single FFT will be calculated. See examples in paramfiles/Davis_etal folder for best settings found for the _2kHz and _LF processing.

Overlap: Fraction of overlap of audio data between each successive FFT. See examples in paramfiles/Davis_etal folder for best settings found for the _2kHz and _LF processing.
**Smooth:** Set to 1 to use 3 x 3 smoothing operator on each spectrogram; otherwise set to zero. See examples in paramfiles/Davisetal folder for best settings found for the _2kHz and _LF processing.

**CallLibraryFile:** Input NetCDF file containing narrowband call library.

**CallLibraryFileBB:** Input NetCDF file containing broadband call library.

**DetectionFileDuration (days):** Number of days worth of autodetection information to be stored in a single NetCDF file in the “lfdcs” subdirectory.

**Scale:** Scale for converting the floating point spectrogram (units of dB) to unsigned short integer (default = 0.003).

**Offset:** Offset for converting the floating point spectrogram (units of dB) to unsigned short integer (default = -100.0).

**SpectrogramDuration (seconds):** Duration of spectrogram that is saved in memory. This should be many seconds greater than the longest anticipated call.

**PitchTrackingWindow (seconds):** Duration of “window” over which pitch tracking is conducted. This should be many seconds greater than the longest anticipated call. Typically just a few seconds shorter than SpectrogramDuration.

**NoiseReductionWindow (seconds):** Time scale over which exponentially weighted running mean is calculated to reduce tonal noise in each FFT frequency band (T in section IIB of Baumgartner and Mussoline 2011; note e = 1 – exp(ln(0.02)Dt/T) in LFDCS – value 0.15 changed to 0.02 from equation 5 in Baumgartner and Mussoline 2011).

**AvgFFTLowThreshold (dB):** Minimum value of the average FFT relative to background that can be included in the exponentially-weighted running means. This parameter is included to keep unusually quiet periods out of the running mean used for spectrogram equalization (e.g., during DMON hydrophone shut-off).

**AvgFFTHighThreshold (dB):** Maximum value of the average FFT relative to background that can be included in the exponentially-weighted running means. This parameter is included to keep unusually loud periods out of the running mean used for spectrogram equalization.

**AvgFFTDurationLimit (seconds):** If the running mean is not updated for a period of time specified with this parameter, the running mean is forced to reset.

**BBP_InThreshold (dB):** Minimum level of the average FFT to indicate the start of a persistent broadband sound. This parameter defines how loud the average FFT must be to consider it potentially the start of a persistent broadband sound.

**BBP_InDuration (seconds):** Minimum duration of a loud broadband sound (i.e., average FFT > BBP_InThreshold) before considering it a persistent broadband sound.

**BBP_OutThreshold (dB):** Maximum level of the average FFT to indicate the end of a persistent broadband sound. This parameter defines how quiet the average FFT must be to consider it potentially the end of a persistent broadband sound.

**BBP_OutDuration (seconds):** Minimum duration of quiet period after a persistent broad
sound (i.e., average FFT < BBP_OutThreshold) to consider a persistent broadband sound is over.

**BBP_MaxDuration** (seconds): Maximum duration of a persistent broadband sound. After this duration, the running mean is forced to reset and the persistent sound is considered part of the background.

**BB_DetectionThreshold** (dB): Minimum amplitude of an element in the spectrogram to trigger broadband sound processing ($a_{bb}$ in section IIC of Baumgartner and Mussoline 2011).

**BB_MinSegmentSpan** (Hz): Minimum span of over-threshold elements in a single FFT to be considered a segment of a broadband sound ($f_{bbseg}$ in section IIC of Baumgartner and Mussoline 2011).

**BB_MinTotalSpan** (Hz): Minimum total span of all segments combined in a single FFT to consider the FFT potentially “inside” a broadband sound ($f_S_{bbseg}$ in section IIC of Baumgartner and Mussoline 2011).

**BB_MinBroadbandDuration** (seconds): Minimum duration of sound to be considered a broadband sound ($t_{bb}$ in section IIC of Baumgartner and Mussoline 2011).

**DetectionThreshold** (dB): Minimum amplitude of an element in the spectrogram to trigger pitch tracking ($a_{pt}$ in section IID of Baumgartner and Mussoline 2011; default = 10.0).

**CostGradientThreshold** (dB): Minimum gradient of cost function over three spectrogram time steps to end pitch tracking ($g$ in section IID of Baumgartner and Mussoline 2011; default = 15.0).

**DistanceWeighting** (dB): Penalty in cost function applied for a frequency “jump” of 1 octave over one spectrogram time step ($w$ in section IID of Baumgartner and Mussoline 2011; default = 20.0).

**MinCallDuration** (seconds): Minimum duration a pitch-tracked sound can last to be considered a legitimate call.

**MinAvgAmplitude** (dB): Minimum average amplitude a sound can have to be considered a legitimate call.

**BlankingTime** (seconds): Time before and after a time step in the pitch track to be blanked or set to zero.

**BlankingFreq** (Hz): Frequency band above and below a time step in the pitch track to be blanked or set to zero.
Appendix B: Suggested Species Daily Presence Scoring Criteria

These are the criteria that the NEFSC PA Group uses for analysis of daily presence of various baleen whale species. Terms such as ‘Manual_Review’, ‘True_Tally’, etc. correspond to the column titles within the exported Daily Presence Sheets (see Exporting Summary Sheets of Autodetections section) where analysis results are recorded. These are the protocols established and used in Davis et al. 2017 and 2020.

Right whale

2 kHz sample rate, call types [5, 6, 7, 8, 9], max_mdist = 3
All call types are included in the clnb_gom9 call library. All detections that are browsed are marked as Correct, Incorrect, or Unknown.

Manual_Review = 1:
Manually view detections for right whales. A day is marked “Present” (Manual_Review = “1”) if there are three or more true detections in a day. Keep a tally of how many true upcall detections are in the day in the “True_Tally” column, and note the times in “True_Tally_Timestamps”. Once 3 true detections have been found in a given day, mark Manual_Review with 1 and move on to the next day.

Manual_Review = 2:
Days with one or two detections will be marked as “Possibly present” (Manual_Review = “2”), with the number of upcalls noted in the “True_Tally” column, and times noted in “True_Tally_Timestamps”. If the 1-2 upcalls are convincingly right whale, mark the “Suggested_Daily_Presence” column = “YES”. Days with only unknown detections, and therefore, unclear if right whales are present, receive Manual_Review = 2. Times can be noted in the “Unknown_TimeStamps” column.

Manual_Review = 0:
A day is marked as “Not Detected” (Manual_Review = “0”) if no detections on that day are “correct” or possibly correct (“unknown”).

Sei whale

2 kHz sample rate, call types [1, 2, 3], max_mdist = 3
Sei whale presence is manually verified, similarly to right whales. Likewise, blue whales produce a nearly identical downsweep (pers. communication with Julien Delarue), and using a single downsweep to determine sei whale presence is no longer reliable. Doublets and triplets (downsweeps separated by 2-4 seconds from the start of the first call to the start of the next call) seem to remain unique to sei whales and can be used for determining sei whale presence. All detections that are browsed are marked as Correct, Incorrect, or Unknown.

Manual_Review = 1:
Manually view detections for sei whales. A day is marked “Present” (Manual_Review = “1”) if there is one true doublet or triplet present, with at least one of the calls pitch tracked in the doublet/triplet. The time stamp of the correct detection (HH:MM) should be noted in the “True_TimeStamp” column.

Manual_Review = 2:
A day is marked as “Possibly present” (Manual_Review = “2”) if the day has only single downsweeps and/or all unknown calls. Singlet detections will all be marked as “unknown” in the LFDCS program. Days with singlet detections (and no true detections) receive a “YES” in the “Singles” column. When only singlets are present, zoom out to a 5 minute window for each detection to see if any doublets or triplets are present and not detected. If a doublet or triplet is present but not pitchtracked, mark “Suggested_Daily_Presence” = “YES”, and in the notes column say, e.g., “Undetected doublet at HH:MM”. If the day has only singlets and the analyst thinks they should be considered for sei whale presence, the “Suggested_Daily_Presence” column = “YES”, with a note stating, e.g., “singlets very likely sei whales”.

Unknown detections that should be looked at more closely should have the time stamp (HH:MM) marked in the “Unknown_TimeStamp” column.

Manual_Review = 0:
A day is marked as “Not Detected” (Manual_Review = “0”) if no detections on that day are “correct” or possibly correct (“unknown”).

**Fin whale**

*Decimated data (resampled at 120 Hz), call type 1, max_mdist = 3*

All detections that are browsed are marked as Correct, Incorrect, or Unknown.

A manual analysis was conducted with fin whales where subsampled hours of data were reviewed for whether or not there were true detections. A logistic regression curve was applied to the hours evaluated to determine the minimum number of detections per hour needed (for 90% confidence of fin whale presence). From a subsample of data from the Northeast U.S., the analysis found hours with 29 or more detections had a 90% chance that fin whales were truly detected. Manual verification of these true detection hours is still needed, however this greatly reduces the amount of manual analysis needed for daily presence review.

Presence sheets for fin whales are created on HOURLY bins. All hours with 29 or more detections are manually verified by an analyst (all other hours with fewer than 29 detections can be ignored). When one detection in a bout of 4 total calls (only one needs to be pitchtracked) is correct, that hour will be given a “1” for truly present in the “Manual_Review” column. Time does not have to be noted. The analyst can then skip to the first hour with 29 or more detections on the next/new date.

Manual_Review = 1:
A day is marked as “Present” (Manual_Review = “1") if there is an hour with 29 or more detections, and there is at least one true detection within a bout of 4 or more 20 Hz pulses.

Manual_Review = 2:
A day is marked as “Possibly present” (Manual_Review = “2") if the only hours with 29 or more detections have only 3 or less 20 Hz pulses present (with at least 1 pulse pitchtracked).

Manual_Review = 0:
A day is marked as “Not Detected” (Manual_Review = “0”) if no detections on that day are “correct” (none of the hours with 29 or more detections are correct).

Further details from the logistic regression: Days that have hours with at least 29 detections/hour (for 90% confidence of fin whale presence) will be given a “1” for truly present.
For the manual evaluation, hours marked present were determined by having at least one true detection within a bout that had 4 or more pulses present (at least three other 20Hz pulses including those not pitch-tracked).

**Humpback whale**

*2 kHz sample rate, call types [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], max_mdist = 3*

Manually view detections for humpback whales.

**Manual_Review = 1:**
A day is marked “Present” (Manual_Review = “1”) if there are three or more true humpback whale vocalizations in a 10 minute period (window zoom max), with at least one of the vocalizations pitch-tracked. Time of the true detection (HH:MM) should be marked in the “True_TimeStamp” column. Due to the number of incorrect detections, there is no need to mark every incorrect detection as “Incorrect”, just page through detections until a “Correct” or “Unknown” detection is found.

Keep track of whether presence is determined by song or social sounds. In the “Song/Social?” column, enter “SOCIAL” if the detections are social sounds, or “UNKNOWN” if it is hard to determine. Leave the column cell blank if it is song, since most of the detections will likely be from song units. If it is faint or hard to tell, err on the side of caution and write “UNKNOWN”.

**Manual_Review = 2:**
Days with only one or two vocalizations will be marked as “Possibly present” (Manual_Review = “2”), and can be noted in the notes column. Unknowns that need to be reviewed or looked at again should have the time stamp noted in the “Unknown_Timestamp” column.

**Manual_Review = 0:**
A day is marked as “Not Detected” (Manual_Review = “0”) if no detections on that day are “correct” or possibly correct (“unknown”).

**Blue whale**

*Decimated data, call types [2, 3, 4], max_mdist = 5*

All detections that are browsed are marked as Correct, Incorrect, or Unknown.

**Manual_Review = 1:**
All days will be verified for blue whale song presence. Presence (Manual_Review = “1”) will be determined by having one true detection, with at least 3 song units present with detection (at least two other units not pitch tracked). A unit is either an A, B, or AB call “packet”. Note the “Quality” column as either Low, Medium, or High, determined as the number of units within an 11-12 minute period that can be distinguished as:

- Low = 3
- Medium = 4-7 units
- High = 8 or more units

To be able to count the number of packets/units within the song, zoom out to an 11 minute period within LFDCS. As long as there are the number of above defined units within the song bout, the song quality can be defined as Low, Medium, or High.

Note the time of the true detection in the “True_Timestamp” HH:MM.
**Manual_Review = 2:**
Blue whales will be marked as “Possibly present” (Manual_Review = “2”) if there are unknown detections, or only 1 or 2 “packets” present in the 11-12 minute distinguishable window. Mark the time in the “Unknown_Timestamp” column.

Blue whale detections will be viewed with a max_mdist = 5.0 to ensure blue whale presence is captured. Only clear calls will be marked. Streams of noise that indicate either distant animals, or are indistinguishable from noise, will not be included as a true detection.

**Manual_Review = 0:**
A day is marked as “Not Detected” (Manual_Review = “0”) if no detections on that day are “correct” or possibly correct (“unknown”).
Appendix C: Tips, Tricks & Common Errors

Code Tips

- Prepare a code document (.txt file) on your desktop with all the commands necessary for your analysis for a quick guide and to help eliminate errors when typing in the terminal (so you can copy + paste). This can also be a place to enter the time and date where you left off in your analysis to save your place.

- Only use 'straight' (‘ not ‘) quotation marks in the code. If you copy and paste from another document, some code may paste with curved quotation marks which will need to be corrected in the terminal before running the code (otherwise will produce an error).

- File and folder names should not have any spaces or special characters, dashes “-” and underscores “_” may be used for separation of text.

- For FileDateSpec in the parameter file, if there are characters that may change or vary in front or after a date, use *. The asterisk means "any combination of 1 or more alphanumeric characters".

- Typing cd ~ in the terminal brings you to your home directory, which should be /Users/Username. To check what folder you are currently in, type pwd in the terminal (for “path working directory”).

- You may get this message (and can ignore it, it has no effect) anytime you open IDL in the terminal:
  % Program caused arithmetic error: Floating overflow

Desktop Window Tips

- Hover cursor over any button in the LFDSCS window and scroll forward or back to select that button. This function can be used (rather than repeatedly clicking the mouse or touchpad on the computer) to scroll or page through the detections more easily.
Part 2
Introduction to LFDCS Real-Time Analysis Protocol
Introduction to LFDCS Real-Time Analysis Protocol

For near real-time applications, the LFDCS runs on the digital acoustic monitoring (DMON) instrument, which has integrated hydrophones for collecting, processing, and recording audio. When autonomous real-time detections are occurring from gliders, moorings, etc., the detections are uploaded onto the Robots4Whales: Autonomous Real-time Marine Mammal Detections webpage under the Active Studies category, then the project’s title. Detections are reported in tables, figures, and pitch tracks which can then be reviewed by an analyst. For more information, please refer to the main Robots4Whales website.

The purpose of Part 2 of this reference guide is to outline a procedure that scientists from the Northeast Fisheries Science Center (NEFSC), Woods Hole Oceanographic Institution (WHOI), and other organizations use when evaluating near real-time pitch tracks. Examples will be based on the Roseway Basin, Southwestern Scotian Shelf, Canada, Summer 2014 project, as that was annotated by Mark. The hope is that this guide will help to standardize and/or provide an example of the evaluation process between analysts for future real-time detection projects.
The Real-Time System: How does it work?

Image 1: Diagram of data flow from the DMON integrated in a Slocum glider to a shore-side server via the Iridium satellite service. These data are displayed on the Robots4Whales website, and pitch tracks and classification information are reviewed by an analyst to produce species-specific occurrence estimates for each monitored tally period. Occurrence estimates are then distributed to users via the same publicly accessible website as well as email and text messages. Web display in the figure shows a pitch track of a single North Atlantic right whale upcall (Baumgartner et al. 2020).
Image 2: Diagram of data flow from the DMON mounted on the multi-function node (MFN) to a shore-side server via the stretch hoses, surface buoy and Iridium satellite service. These data are displayed on the Robots4Whales website, and pitch tracks and classification information are reviewed by an analyst to produce species-specific occurrence estimates for each monitored tally period. Occurrence estimates are then distributed to users via the same publicly accessible website as well as email and text messages. Web display in the figure shows a pitch track of a single North Atlantic right whale upcall, patterned downsweeps in a humpback song, and two possible 20-Hz fin whale pulses (Baumgartner et al. 2019).
Reference Study

If at any point in time you have a question about a call type, or how to classify a detection, please refer to the Roseway Basin, Southwestern Scotian Shelf, Canada, Summer 2014 study, as that was fully annotated by Mark.
Main Page

Latest Detections Table
On the main page of the Robots4Whales website, the first section you will see is the Latest Detections table which contains links to all of the active deployments, a summary of species detected in the last three days, and the operators or collaborators involved with the mission.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Species detected in last 3 days</th>
<th>Operator(s)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Francisco buoy</td>
<td>No detections in the last 3 days</td>
<td>Woods Hole Oceanographic Institution</td>
</tr>
<tr>
<td>Santa Barbara buoy</td>
<td>Fin and humpback whales</td>
<td>Woods Hole Oceanographic Institution</td>
</tr>
<tr>
<td>Stellwagen Slocum glider</td>
<td>Sei, fin and humpback whales</td>
<td>Woods Hole Oceanographic Institution and NOAA Northeast Fisheries Science Center</td>
</tr>
<tr>
<td>Martha’s Vineyard buoy</td>
<td>Fin and humpback whales</td>
<td>Woods Hole Oceanographic Institution</td>
</tr>
<tr>
<td>Cox Ledge Slocum glider</td>
<td>No detections in the last 3 days</td>
<td>Woods Hole Oceanographic Institution and NOAA Northeast Fisheries Science Center</td>
</tr>
<tr>
<td>New York Bight SE buoy</td>
<td>Humpback whale</td>
<td>Woods Hole Oceanographic Institution</td>
</tr>
<tr>
<td>Coastal New Jersey Slocum glider</td>
<td>Fin and humpback whales</td>
<td>Rutgers University and Woods Hole Oceanographic Institution</td>
</tr>
<tr>
<td>Atlantic City buoy</td>
<td>Humpback whale</td>
<td>Woods Hole Oceanographic Institution</td>
</tr>
<tr>
<td>Ocean City buoy</td>
<td>Humpback whale</td>
<td>Woods Hole Oceanographic Institution and University of Maryland Center for Environmental Science</td>
</tr>
<tr>
<td>Cape Hatteras buoy</td>
<td>No detections in the last 3 days</td>
<td>Woods Hole Oceanographic Institution and NAVFAC Atlantic</td>
</tr>
</tbody>
</table>

*Includes organizations serving as platform operators and near real-time acoustic analysts. Other collaborators and sponsors are listed on each platform webpage.

Active Deployments Map
Scroll down further and you will find a map showing all of the current active deployments.
Projects Menu

Below the map under Projects you will find a scrollable menu starting with active missions and then archived missions with links to each project page. All raw pitch track data (and full spectrogram images for some deployments) from any Robots4Whales real time deployment can be accessed here.

<table>
<thead>
<tr>
<th>Active missions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slocum Glider G3, Coastal New Jersey (March 2022)</td>
</tr>
<tr>
<td>Slocum Glider G3, Stellwagen Bank (March 2022)</td>
</tr>
<tr>
<td>Slocum Glider G3, Cox Ledge (February 2022)</td>
</tr>
<tr>
<td>Moored Baoy, San Francisco, California (February 2021)</td>
</tr>
<tr>
<td>Moored Baoy, Cape Hatteras, North Carolina (October 2021)</td>
</tr>
<tr>
<td>Moored Baoy, Martha's Vineyard, Massachusetts (July 2021)</td>
</tr>
<tr>
<td>Moored Baoy, Atlantic City, New Jersey (July 2021)</td>
</tr>
<tr>
<td>Moored Baoy, Ocean City, Maryland (May 2021)</td>
</tr>
<tr>
<td>Moored Baoy, New York Right SE (May 2021)</td>
</tr>
<tr>
<td>Moored Baoy, Santa Barbara Channel (May 2021)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Archived missions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slocum Glider G2, Gulf of Maine (December 2021)</td>
</tr>
<tr>
<td>Slocum Glider G3, Stellwagen Bank (December 2021)</td>
</tr>
</tbody>
</table>

Operations, Sounds, & Platforms

Additional sections below Projects include Operations, Sounds, and Platforms which provide a basic description of the pitch tracking algorithm, recordings of the species and their respective call types that we are listening for, and descriptions and images of the autonomous platforms used for real time deployments (most common being the Slocum glider and moored buoy).

Real-Time Acoustic Diagnostics

Near the bottom of the main page, there is a section titled Real-time Acoustic Diagnostics which contains a link to a page summarizing the platforms' acoustic environments and real-time monitoring diagnostics. This diagnostic information can provide valuable insights into how much data is being transmitted by each platform, detections summaries, power spectra comparison, and background noise spectra for all active platforms. The following images are examples of some of the summary graphics you can find on the Diagnostics page.
Percentage of time that pitch track data is available for different platforms over the last 3 days:

Average count of "other" detections per nominal 15-minute tally period over the last 3 days:
Latest power spectra from all platforms:

This is also shown in separate graphics on the Diagnostics webpage that isolate the power spectra from the moored buoys and the gliders.
**Recent background spectra examples from glider and moored buoy deployments:**

The Diagnostics web page includes recent background spectra for all platforms which allows for convenient comparison of acoustic environments and data transmission between platforms.

![Stellwagen Slocum glider (shnmu0322) recent background spectra](image1)

![Martha's Vineyard buoy (mamv0721) recent background spectra](image2)

**Reference Guide to LFDCS, Tutorials, & Other Information**

At the bottom of the main page on the Robots4Whales website, there is another section which contains a link to the latest version of the Reference Guide to LFDCS. Versions will be indicated clearly at the beginning of the document by version number (e.g., Version 1.1, 1.2, etc.) and revision date so you can be sure you are using the latest version.

Recordings of the LFDCS Tutorial from the DCLDE 2022 conference can also be found here, along with references and Mark's contact information.
Project Pages

You can access the individual project web pages via the links in the Latest Detections table or the Projects menu on the main page of the website. Each project page may look a little different depending on the purpose of the project. The following sections describe most of the general information that you can find on the individual project pages.

Note: The example of the Stellwagen Bank National Marine Sanctuary, Spring 2022 Slocum glider deployment is used in the following sections. Project pages for glider deployments contain slightly different information than moored buoy project pages as there is additional information pertaining to detections along the glider tracks.

Study Objectives

The Study Objectives section of each project page describes the monitoring and, if applicable, the mitigation goals of that project. Principal investigators, collaborators, and analysts are also listed in this section with a picture of the platform.

Stellwagen Bank National Marine Sanctuary, Spring 2022

Study objectives

A Slocum G3 glider was deployed near the Stellwagen Bank National Marine Sanctuary just east of Massachusetts to conduct surveys for tagged fish and baleen whales, including the seriously endangered North Atlantic right whale. The glider is collecting data for the Navy/NOAA SANCTHOUND program.

Principal Investigators: Sofia Van Parije (NOAA NERSC), Tim Rowell (NOAA NERSC), Leila Hatch (NOAA NOS), Jenni Stanley (WHOI/NOAA NOS/NERSC) and Mark Baumgartner (WHOI)

Analyst: Julianne Wilder
Platform Location

If you scroll down below the Study Objectives section you will find a map showing the platform's current location. If the platform is a moored buoy, its location will be shown simply as a yellow star. If the platform is a glider, the full glider track will be shown in gray with the start location and location of the last transmission.
Analyst-Reviewed Species Occurrence Maps

On any project pages for glider deployments, below the Platform Location map you will find maps of occurrence by species. These are based on the analyst’s scoring of species presence from the pitch track data. The small gray dots indicate where there is pitch track data collected by the glider when it was at that location, but the species was scored as Not detected by the analyst for that pitch track period. The yellow dots represent pitch track periods that the analyst scored as Possibly detected for that species when the glider was at that location. The red dots represent pitch track periods that the analyst scored as Detected for that species. These species presence scores are determined by the analyst for each pitch track tally period using the Real-Time Analysis Protocol.
## Daily Analyst Review Table

Scroll down further and you will find the Daily Analyst Review table for that deployment. This shows a summary of which species have been scored as Detected (red), Possibly detected (yellow), or Not detected (gray) by the analyst for each day of the deployment. If just one pitch track tally period has been scored as Detected or Possibly detected within a given day, that tally period will determine daily presence and the box for that species on that day will turn red or yellow respectively. These species presence scores are determined by the analyst for each pitch track tally period using the [Real-Time Analysis Protocol](#).

<table>
<thead>
<tr>
<th>Date</th>
<th>Sei whale</th>
<th>Fin whale</th>
<th>Right whale</th>
<th>Humpback whale</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/11/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/10/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/09/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/08/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/07/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/06/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/05/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/04/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/03/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/02/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/01/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/31/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/30/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/29/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/28/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/27/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/26/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/25/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/24/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/23/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/22/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/21/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/20/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Legend
- **Detected**
- **Possibly detected**
- **Not detected**
**Daily analyst notes:**

The dates in the left hand column of the Daily Analyst Review table link to any notes that the analyst took for certain pitch track periods on a given day, organized by species. The date and timestamps in the left hand column of the notes tables link to the specific pitch track tally period for which notes were taken.

### Right whale:

<table>
<thead>
<tr>
<th>Date/time (local)</th>
<th>Occurrence</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/03/22 13:07:44</td>
<td>Detected</td>
<td>42.3930</td>
<td>-70.6169</td>
<td>Faint classified and unclassified upcalls throughout the period. All upcalls are isolated from any of the HW song in the period.</td>
</tr>
<tr>
<td>04/03/22 15:07:44</td>
<td>Possibly detected</td>
<td>42.4094</td>
<td>-70.6248</td>
<td>Two possible faint upcalls with one classification in P16 but they could also be HW.</td>
</tr>
<tr>
<td>04/03/22 15:22:44</td>
<td>Possibly detected</td>
<td>42.4011</td>
<td>-70.6259</td>
<td>Two possible unclassified upcalls in P2 and 3 but the first is extremely faint and the second is short and looks like it could be part of some faint HW song.</td>
</tr>
</tbody>
</table>

### Humpback whale:

<table>
<thead>
<tr>
<th>Date/time (local)</th>
<th>Occurrence</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/03/22 00:07:44</td>
<td>Detected</td>
<td>42.3776</td>
<td>-70.5023</td>
<td></td>
</tr>
<tr>
<td>04/03/22 01:07:44</td>
<td>Detected</td>
<td>42.3788</td>
<td>-70.5150</td>
<td></td>
</tr>
<tr>
<td>04/03/22 02:07:44</td>
<td>Detected</td>
<td>42.3791</td>
<td>-70.5219</td>
<td></td>
</tr>
<tr>
<td>04/03/22 03:07:44</td>
<td>Detected</td>
<td>42.3814</td>
<td>-70.5296</td>
<td></td>
</tr>
<tr>
<td>04/03/22 04:07:44</td>
<td>Detected</td>
<td>42.3832</td>
<td>-70.5351</td>
<td></td>
</tr>
<tr>
<td>04/03/22 05:07:44</td>
<td>Detected</td>
<td>42.3858</td>
<td>-70.5414</td>
<td></td>
</tr>
<tr>
<td>04/03/22 06:07:44</td>
<td>Detected</td>
<td>42.3916</td>
<td>-70.5038</td>
<td>One possible faint unclassified upcall in P5 but it could be HW, RP, or faint noise.</td>
</tr>
</tbody>
</table>
Time Series of Analyst-Reviewed Species Occurrence

Following the Daily Analyst Review table, there is a time series that shows the percentage of pitch track tally periods (i.e., summary periods) for which each species was scored as acoustically present (red) or possibly present (yellow) for each day of the deployment.
Diel Plots of Analyst-Reviewed Species Occurrence

Following the Time Series table, there is an array of diel plots showing the analyst-reviewed species presence score for each pitch track tally period transmitted throughout each day of the deployment. Each dot in the diel plot represents one pitch track tally period and the dot color represents the analyst’s presence score of Detected (red), Possibly detected (yellow), or Not detected (gray) for that species over that period.
Recent Background Noise Spectra

Below the diel plots, you will find a spectra for Recent Background Noise. This shows the background noise spectra for the last three days of the deployment. These spectra can be viewed on the individual pitch track pages as well.

Oceanographic Observations

Below the Recent Background Noise spectra, there are plots of oceanographic information from that deployment including chlorophyll fluorescence, turbidity, temperature, and salinity.
Links To Detailed Information

At the bottom of each project page there is a section titled Links to Detailed Information that contains links to the automated detection data, DMON/LFDCS diagnostics, and platform diagnostics for that deployment. The 'Automated detection data' page will be the most useful to the analyst, as it leads to a page with further raw detection output as well as the 'Daily tally tables' for each day of the deployment.

Daily tally tables:

Near the bottom of the Automated detection data page, you will find the Daily tally tables. The incoming data is separated by days, and you can access data from a particular day by clicking on the link. The data for the current day will be displayed right there on the Automated detection data page (without a day link).

Each row in the table corresponds to a nominal 15-minute summary period, and the date/time displayed for a row corresponds to the date/time of the end of the 15-minute period (in local time). This is followed by the number of calls the DMON/LFDCS has classified per species. There is also an “Other” column for those sounds that did not match any calls in the call library. The “Duration” column refers to the duration in the summary period (in seconds); this should typically be 900 seconds (15 minutes) unless pitch tracking was turned off for a glider surfacing (Slocum glider only) or the DMON audio was muted to assess noise conditions and produce a time mark in the audio recording.

The “Tracks” column will show you which summary periods contain pitch track information (noted by a “PT”). Note that a maximum of 8 KB of pitch track data per hour is transmitted to shore via Iridium satellite to minimize cost, so not all summary periods have associated pitch track data available. To evaluate a summary period with pitch tracks, click on the “PT” link; this is further explained in the Using the “Pitch Track” page section of this document. If there is a “Map” and “Latitude/Longitude” columns, those will indicate the position of the glider at that particular point in time.

An example of what the Daily tally tables section looks like is included on the following page.
<table>
<thead>
<tr>
<th>Date/time</th>
<th>S mêle</th>
<th>Fin whale</th>
<th>Right whale</th>
<th>Humpback whale</th>
<th>Other</th>
<th>Duration</th>
<th>Tracks</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/11/22 00:07:44</td>
<td>5</td>
<td>22</td>
<td>15</td>
<td>36</td>
<td>825</td>
<td>900</td>
<td>PT 42.4503, -70.5210</td>
</tr>
<tr>
<td>04/11/22 00:22:44</td>
<td>0</td>
<td>30</td>
<td>10</td>
<td>20</td>
<td>701</td>
<td>900</td>
<td>PT 42.4503, -70.5218</td>
</tr>
<tr>
<td>04/11/22 00:32:15</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>13</td>
<td>497</td>
<td>571</td>
<td>PT 42.4502, -70.5224</td>
</tr>
<tr>
<td>04/11/22 00:52:01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Map 42.4460, -70.5225</td>
</tr>
<tr>
<td>04/11/22 00:52:44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>42</td>
<td>Map 42.4460, -70.5225</td>
</tr>
<tr>
<td>04/11/22 01:07:44</td>
<td>0</td>
<td>25</td>
<td>1</td>
<td>11</td>
<td>399</td>
<td>900</td>
<td>PT 42.4459, -70.5242</td>
</tr>
<tr>
<td>04/11/22 01:22:44</td>
<td>2</td>
<td>30</td>
<td>7</td>
<td>16</td>
<td>481</td>
<td>900</td>
<td>Map 42.4461, -70.5265</td>
</tr>
<tr>
<td>04/11/22 01:37:44</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>6</td>
<td>599</td>
<td>900</td>
<td>Map 42.4462, -70.5287</td>
</tr>
<tr>
<td>04/11/22 01:52:44</td>
<td>1</td>
<td>30</td>
<td>6</td>
<td>34</td>
<td>835</td>
<td>900</td>
<td>Map 42.4464, -70.5310</td>
</tr>
<tr>
<td>04/11/22 02:07:44</td>
<td>0</td>
<td>22</td>
<td>15</td>
<td>39</td>
<td>932</td>
<td>900</td>
<td>PT 42.4466, -70.5332</td>
</tr>
<tr>
<td>04/11/22 02:22:44</td>
<td>4</td>
<td>24</td>
<td>10</td>
<td>29</td>
<td>781</td>
<td>900</td>
<td>Map 42.4467, -70.5355</td>
</tr>
<tr>
<td>04/11/22 02:37:44</td>
<td>0</td>
<td>26</td>
<td>14</td>
<td>42</td>
<td>756</td>
<td>900</td>
<td>Map 42.4469, -70.5377</td>
</tr>
<tr>
<td>04/11/22 02:51:13</td>
<td>0</td>
<td>13</td>
<td>2</td>
<td>7</td>
<td>517</td>
<td>809</td>
<td>Map 42.4470, -70.5399</td>
</tr>
<tr>
<td>04/11/22 03:12:29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Map 42.4437, -70.5419</td>
</tr>
<tr>
<td>04/11/22 03:22:44</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>11</td>
<td>289</td>
<td>614</td>
<td>PT 42.4421, -70.5442</td>
</tr>
<tr>
<td>04/11/22 03:37:44</td>
<td>0</td>
<td>25</td>
<td>4</td>
<td>18</td>
<td>617</td>
<td>900</td>
<td>Map 42.4425, -70.5473</td>
</tr>
<tr>
<td>04/11/22 03:52:44</td>
<td>0</td>
<td>13</td>
<td>3</td>
<td>18</td>
<td>573</td>
<td>900</td>
<td>Map 42.4430, -70.5504</td>
</tr>
<tr>
<td>04/11/22 04:07:44</td>
<td>5</td>
<td>17</td>
<td>3</td>
<td>15</td>
<td>603</td>
<td>900</td>
<td>PT 42.4434, -70.5535</td>
</tr>
<tr>
<td>04/11/22 04:22:44</td>
<td>1</td>
<td>18</td>
<td>5</td>
<td>22</td>
<td>698</td>
<td>900</td>
<td>Map 42.4439, -70.5566</td>
</tr>
</tbody>
</table>

Note:
Tallies of classified calls are reported by the DMON every 15 minutes.
Pitch tracks of individual calls are reported at a maximum rate of 8 KB per hour.
While all detected calls are tallied in the table above, they are not all reported as pitch tracks.
Only calls with an average amplitude of 11 dB above background or higher are tallied and reported as pitch tracks.
Only calls with a Mahalanobis distance less than 3 are tallied.
Other indicates all calls/sounds not found in the call library.
Listening duration is period over which calls were detected (seconds).
All dates/ times in EDT time zone.
Real-Time Analysis Protocol
Using the “Pitch Track” page

Click on the first “PT” in the tally table. This will bring you to a page that will have pitch tracks for that summary period (previously described in the document as "pitch track tally periods", henceforth known as the “Pitch Track” page). The transmission time information and species counts will be displayed at the top of the page (which is identical to the row from the tally table). Next you should see fifteen 1-minute figures containing the pitch tracks. There may be dotted vertical lines with a code above that will indicate when pitch tracks are being generated or transmitted by the DMON/LFDCS. The codes and their definitions are as follows:

- **MUTEON**: The hydrophone is muted to assess system noise and to provide a time mark in the audio recording.
- **MUTEOFF**: The hydrophone is unmuted and normal recording has resumed.
- **ADDET_OFF**: A maximum of 8 KB of pitch track data per hour is transmitted by the glider. The ADDET_OFF message indicates that this limit has been reached.
- **ADDET_ON**: Transmission of pitch track data has resumed.
- **$ADRUN, 0**: The glider has reached the surface and will begin data transmission home, so pitch tracking is terminated (Slocum glider only).
- **$ADRUN, 3**: The glider has finished data transmission at the surface and is initiating a dive, so pitch tracking has resumed (Slocum glider only).

The pitch tracks will be color coded, cooler colors (blue) represent quieter signals and warmer colors (red) represent louder signals. Sounds that the DMON/LFDCS classifies as a known call type (from the call library) will have two white numbers displayed below the call. The top number represents the species ID and the bottom number represents the Mahalanobis distance. The latter is not typically used in the evaluation process, but the former is very important. For the northeast United States call library, the species call types are as follows:

- Sei whale downsweep: Call types 1-3
- Fin whale 20-Hz pulse: Call type 4
- Right whale upcall: Call types 5-8
- Humpback whale (various calls): Call types 15-20
  - **Note**: Call type 17 is a low-frequency humpback downsweep very similar to a sei whale downsweep.

If you want to know what the species IDs are for your project, go to any Pitch Track page and scroll down to the bottom. Your species IDs and vertical line codes will be recorded there (the bullets previously listed are a common example of what you might see).
Below the pitch tracks is the form that will be filled out after reviewing the pitch tracks. There are three choices per species, “Detected”, “Possibly detected”, and “Not detected” (default). When to assign a category to a species is covered in the Determining species section of this document. Below the table is a text field (“Notes”) where you can enter comments about what you observed. Things to write down include unknown signals that could be of interest, signals that could belong to a species but there was not enough evidence to label as “Possibly detected”, and documentation (evidence) of species presence. Essentially, you would want to have notes of the times of interest such that once the platform is out of the water and the data are back at the lab, you can go through the spectrograms and listen to signals to confirm/reject what you originally thought it was.

Once you have completed the form, click on the “Submit” button. This will prompt you for a username and password. Each analyst will receive their own unique username and password from Mark. You will only be prompted for these credentials once during a session unless you close out of your browser window mid-analysis.

Once the form has been filled out and you click the “Submit” button, the website will bring you to the next Pitch Track page. You can also maneuver between Pitch Track pages by either the “Back” or “Next” buttons at the bottom of the page. If you want to change a previous form submission, just navigate to that Pitch Track’s page, re-fill the form, and press “Submit”. Selecting the “Back” or “Next” buttons will not save any new notes or species presence scores.
Determining species

The most important thing to keep in mind is to be conservative when determining the detection of a species. There are four main criteria for determining species acoustic presence from pitch track data: amplitude, shape, isolation, and classification. Each species has a different variation of these criteria for it to be considered “Detected”, “Possibly detected”, or “Not detected”. The following sections describe the criteria used for determining the detection score for each species. If you are still in doubt, please refer to the Roseway Basin study to see how Mark has classified his pitch tracks.

The Four Main Criteria for Determining Species

- Amplitude of the signal
- Shape of the pitch track
- Isolation from other pitch tracks (context)
- Classification of species based on the detector's call library (species ID)

Amplitude

The amplitude of a signal (i.e., how loud or quiet it is) can sometimes be helpful in assessing pitch tracks. Faint (light to dark blue) pitch tracks can be produced either by faint whale calls or in some circumstances, by noise. For example, spurious pitch tracks can be produced by the low-frequency whooshing sound produced by breaking waves as a Slocum glider nears the surface. On rare occasions, these spurious pitch tracks can resemble actual whale calls. These pitch tracks are often quiet, so quiet calls should always be eyed with some suspicion. Use the criteria described in the following sections of this document for each species and if the context, pattern, or accompanying calls lead you to believe a quiet call is genuinely produced by a whale, then score it as such. Loud tonal frequency modulated sounds that are not at the very base of the spectrogram, in contrast, are typically not spurious and they are usually well pitch-tracked. These should be viewed with much less suspicion.

Shape

The shape of a pitch track can be used to assess whether it is a true call or just noise. A call is easier to identify if it has “good shape”, meaning it is smooth and/or has a form that is characteristic of the species in question. A pitch track that has poor shape may be broken or jagged. Sometimes the pitch tracks will have straight lines connecting it to other calls or noise. This is because the algorithm that produces the pitch tracks believes that those two sounds belong together, even if they do not. When this happens, we use the term “artifact”. These artifacts can distort pitch tracks and make it difficult to determine whether the call is real or if it is just noise. Examples of artifacts are shown in the humpback whale “Possibly detected” section of this document.

Isolation or context

The degree of isolation of a call from spurious pitch tracks or calls made by another species can be helpful in determining its source. Usually assessing the 5 seconds before and after the call can clue the analyst into possible noise or biological sources that could have produced a deceiving pitch track. For example, if the call is surrounded by pitch tracks that look relatively similar and appear to be produced by random noise, the analyst should be more skeptical.
In other cases, it may be helpful to assess longer periods of time surrounding the call. Analyzing a full minute before and after a call or occasionally the entire 15-minute period can provide contextual information about other species present in the area that may be producing similar calls. For example, if there is a potential right whale upcall but humpback calling is also observed in the same period, the analyst should be cautious and assess whether the upcall appears to be “in-rhythm” with the humpback song pattern or similar to calls that are in pattern, or whether it is sufficiently isolated and dissimilar to be considered as a right whale. This situation is further described in the right whale “General” section of this document.

**Classification**

If the call has been classified by the DMON/LFDCS classification system and assigned a Species ID number (see the Using the “Pitch Track” Page section), that classification can be used to support whether a species is present or not. For sei, fin, and right whales, a summary period can be scored as “Detected” only if there are one or more classified calls. If there are no classified calls for these species, then only “Possibly detected” or “Not detected” can be scored. This is not true of humpback whales, however, since humpback calls change often and are typically not well represented in the call library. There may be cases when there is clear humpback song in a period but none of the calls are classified as humpback. In these cases, it may be appropriate to still score the period as "Detected" for humpback since the song pattern is easily identified.
Species Quick Guides

The four tables below are included in each of the following sections detailing the real-time analysis protocol for determining presence of sei, fin, humpback, and right whales in the North Atlantic Ocean. This page is a quick reference guide for those protocols. The following protocols should be read in full before proceeding with analysis.

### Right whale

<table>
<thead>
<tr>
<th>LFDCS Classified (Y/N)</th>
<th>Pattern</th>
<th>Context</th>
<th>Number of calls needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected</td>
<td>Y</td>
<td>None</td>
<td>3+ calls, 1+ must be classified</td>
</tr>
<tr>
<td></td>
<td>Y/N</td>
<td>None</td>
<td>1-2 classified calls or 3+ unclassified calls</td>
</tr>
<tr>
<td>Not detected</td>
<td>N</td>
<td>None</td>
<td>N/A</td>
</tr>
</tbody>
</table>

### Sei whale

<table>
<thead>
<tr>
<th>LFDCS Classified (Y/N)</th>
<th>Pattern</th>
<th>Context</th>
<th>Number of calls needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected</td>
<td>Y</td>
<td>Doublets/triplets</td>
<td>3+ classified singles or 1+ classified within doublet/triplet</td>
</tr>
<tr>
<td></td>
<td>Y/N</td>
<td>No observed pattern</td>
<td>1-2 classified singles</td>
</tr>
<tr>
<td>Not detected</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

### Fin whale

<table>
<thead>
<tr>
<th>LFDCS Classified (Y/N)</th>
<th>Pattern</th>
<th>Context</th>
<th>Number of calls needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected</td>
<td>Y</td>
<td>Repeated with constant 8-16 s interval (do not count missing calls as part of pattern)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>3 calls in pattern with constant 8-16 s interval (do not count missing calls as part of pattern)</td>
<td>N/A</td>
</tr>
<tr>
<td>Not detected</td>
<td>N</td>
<td>No pattern or irregular pattern</td>
<td>N/A</td>
</tr>
</tbody>
</table>

### Humpback whale

<table>
<thead>
<tr>
<th>LFDCS Classified (Y/N)</th>
<th>Pattern</th>
<th>Context</th>
<th>Number of calls needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected</td>
<td>Y/N</td>
<td>None</td>
<td>Many calls (5+)</td>
</tr>
<tr>
<td></td>
<td>Y/N</td>
<td>None</td>
<td>Few calls (1-4)</td>
</tr>
<tr>
<td>Not detected</td>
<td>N</td>
<td>None</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Right whale

Quick guide

<table>
<thead>
<tr>
<th>Detected</th>
<th>LFDCS Classified (Y/N)</th>
<th>Pattern</th>
<th>Context</th>
<th>Number of calls needed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>None</td>
<td>If humpbacks present, assess for off-rhythm and/or different amplitude</td>
<td>3+ calls, 1+ must be classified</td>
</tr>
<tr>
<td>Possibly detected</td>
<td>Y/N</td>
<td>None</td>
<td>If humpbacks present, assess for off-rhythm and/or different amplitude</td>
<td>1-2 classified calls or 3+ unclassified calls</td>
</tr>
<tr>
<td>Not detected</td>
<td>N</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

General

North Atlantic right whales produce an upsweep between 50 and 300 Hz called the upcall. For a detailed description of right whale call characteristics, see Parks et al. 2011 and Clark et al. 2010. In contrast to fin and humpback whale patterned calling (song), the upcall is not produced as often and typically does not occur in any recognizable pattern. The upcall is most often confused with a similar call sometimes produced by humpback whales, so context is particularly important when determining if right whales are present. Any upcalls observed concurrent with humpback-like pitch tracks should be treated with suspicion. Only upcalls that are “off-rhythm” with a humpback song or of different amplitude (e.g., humpback song is loud, upsweep is quiet) might be considered as produced by a right whale. Upcalls in complete isolation (i.e., without any evidence of humpback presence) are much more likely to be produced by right whales.
**Detected**

Right whales can be scored as “Detected” when 3 or more upcalls are detected, one or more of which is classified as a right whale upcall by the DMON/LFDCS, and there is no evidence of humpback whale presence. If there is evidence of humpback whale presence, detected upcalls must be off-rhythm or have different amplitude (i.e., loudness) than the humpback whale calls.

The following figures are examples of when a right whale could be considered “Detected”. Please refer to the Roseway Basin project if you are unsure.
Many calls and all are loud

No humpbacks are present in the 15-minute summary period

LFDCS was able to classify almost all calls

= right whale “Detected”
**Possibly detected**

If there are only one or two upcalls in a 15-minute summary period, but they are both classified as right whale upcalls, then score as “Possibly detected”. If there are 3 or more unclassified calls, score as “Possibly detected”.

The following figures are examples of when a right whale could be considered “Possibly detected”.

Faint call but classified as a right whale

Each is the only upcall in their respective 15-minute summary periods

= right whale “Possible detected” for each of these cases
**Not detected**

If there are only 1-2 unclassified upcalls, mark the summary period as “Not detected”. If there are singing humpbacks be cautious! It is helpful to comment in the Notes section of the web form about your suspicions about possible right whale calls.

The following figure is an example of when a right whale could be considered “Not detected”.

![Diagram showing frequency and time with a red box highlighting a single upcall that is not classified and is very faint, indicating a right whale “Not detected” on the summary period.](image-url)
Sei whale

Quick guide

<table>
<thead>
<tr>
<th>Detected</th>
<th>LFDCS Classified (Y/N)</th>
<th>Pattern</th>
<th>Context</th>
<th>Number of calls needed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>Doublets/triplets</td>
<td>If humpback or blue whales present, exercise caution</td>
<td>3+ classified singles or 1+ classified within doublet/triplet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Possibly detected</th>
<th>LFDCS Classified (Y/N)</th>
<th>Pattern</th>
<th>Context</th>
<th>Number of calls needed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>No observed pattern</td>
<td>If humpback or blue whales present, exercise caution</td>
<td>1-2 classified singles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Not detected</th>
<th>LFDCS Classified (Y/N)</th>
<th>Pattern</th>
<th>Context</th>
<th>Number of calls needed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

General

Sei whales emit downsweeps between 80 and 30 Hz that are produced in singles, doublets, or triplets. For a detailed description of sei whale call characteristics, see Baumgartner et al. 2008. Doublets or triplets are believed to be diagnostic of species presence. Low-frequency downsweeps in singles or singles in uniform succession can also be produced by humpback whales, so care must be exercised in the presence of other humpback whale sounds. However, the presence of clear doublets or triplets that are “out of rhythm” with a humpback whale song can be scored as sei whale downsweeps.

Blue whales have also been known to produce low-frequency ‘downsweeps' called a D call, so be cautious if there are signs of other blue whale calls. Concave up blue whale D calls regularly set off the sei whale detector. These downsweeps can occur in doublets and triplets, but usually the inter-pulse interval is longer than 3.5 sections (closer to 5-6 seconds, see example in the Northwest Atlantic blue whale "Not detected" section).

Sei whale downsweeps can have subtle variations in time-frequency characteristics that can be difficult to glean from viewing the pitch tracks. If the LFDCS has classified the call as a sei whale (call types 1-3), you can be confident that the shape, frequency range, and duration of the call all conform to what is expected for a known sei whale downsweep. This can be helpful, particularly when other low-frequency downsweeps of dubious origin are present. Note that some sei whale downsweeps can be classified as call type 17 (humpback whale low-frequency downsweep). If calls of call type 17 are present (particularly in doublets or triplets) and there is no evidence of humpback presence, you should consider the possibility that sei whales are producing the calls.
**Detected**

To score a summary period as “Detected” for sei whales, several downsweeps should be present. As few as two downsweeps can be used to justify a “Detected” score if they are present in a doublet and at least one of the calls in the doublet is classified by the DMON/LFDCS as a sei whale call (call types 1-3). If there are many unclassified calls arranged in doublets with no evidence of humpback whale presence, the summary period can be marked as “Detected” (see Roseway Basin example 09/20/14 18:48:42). Doublets or triplets are diagnostic of species presence; be sure that the calls that comprise doublets or triplets are ~3.5 seconds apart (i.e., 3.5 seconds between the start of one call and the start of the next call; see Baumgartner et al. 2008). Exercise caution when only single calls are present; however, 3 or more classified single calls (not in a regular pattern) can be scored as “Detected”.

The following figures are examples of when a sei whale could be considered “Detected”.

![Graph showing frequency distribution over time with a peak at 2022-03-24 17:10:20 with downsweps indicating "sei whale "Detected".](image-url)
More than 1 call has been detected in a 15-minute summary period

DMON/LFDCS has classified most of the calls as “sei”

Downsweeps are in triplets/doublets

= sei whale “Detected”
**Possibly detected**

If 1-2 single calls within the 15-minute summary period have been classified by the LFDCS as “sei”, then it can be considered “Possibly detected” (other unclassified downsweeps could be present). If only a doublet is present but neither of the calls has been classified as sei whale downsweeps, the summary period can be considered “Possibly detected”. If humpbacks are present, exercise caution (see General above).

The following figures are examples of when a sei whale could be considered “Possibly detected”.

LFDCS has classified these calls as “humpback” (call type 17) but since there are no humpback calls in the vicinity, can be more confident that these are sei

Only two singlets are classified

= sei whale “Possibly detected”
Only downsweep in the 15-minute summary period

Classified by the LFDCS as “sei”

No doublet/triplet

Faint call

= sei whale “Possibly detected”

Only downsweep in the 15-minute summary period

Classified by the LFDCS as “sei”

No doublet/triplet

Loud call

= sei whale “Possibly detected”
**Not detected**

If there is only one downsweep present within the 15-minute summary period but it is not classified, then it can be considered “Not detected”. If there are unclassified calls that look like they could be sei whales, but they are not in doublets/triplets, too long in duration, or not in the expected frequency band of 30-100 Hz, then score it as “Not detected”. It may be helpful to comment in the notes why you chose “Not detected” if there are signals present.
**Fin whale**

*Quick guide*

<table>
<thead>
<tr>
<th>LFDCS Classified (Y/N)</th>
<th>Pattern</th>
<th>Context</th>
<th>Number of calls needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected</td>
<td>Y</td>
<td>Repeated with constant 8-16 s interval (do not count missing calls as part of pattern)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Possibly detected</td>
<td>Y</td>
<td>3 calls in pattern with constant 8-16 s interval (do not count missing calls as part of pattern)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not detected</td>
<td>N</td>
<td>No pattern or irregular pattern</td>
<td>N/A</td>
</tr>
</tbody>
</table>

**General**

Fin whales in the western North Atlantic Ocean emit 20-Hz pulses (downsweeps) that occur in regular patterns (song). Internote intervals can be between 8 and 16 seconds. For a detailed description of fin whale call characteristics, see [Delarue et al. 2008](#) and [Morano et al. 2012](#). The DMON/LFDCS usually does a good job classifying these calls, so if you see a call that looks like a 20-Hz pulse but is not classified as one, be suspicious; it may be in the wrong frequency band, which is hard to judge at the scale you are typically viewing the pitch tracks. Calls comprising pulse trains should have similar amplitudes.

The figure to the right is from the [Morano et al. 2012](#) paper which describes in detail the seasonal shifts in fin whale INIs in the western North Atlantic. In general, fin whale INIs may be in the longer 15-16 second range in March-May, and in the shorter 8-9 second range in September-January. During the "transitional months" of February and June-August, it may be more common to observe variation in the INI duration.

![Figure 3: INI of fin whale 20Hz song notes measured for 1 January 2008–31 December 2009 in Massachusetts Bay (gray squares, N = 481 songs) and New York Bight (black triangles, N = 129 songs). The generalized additive model (black line) explains the seasonal changes in INI, where the short-INI season occurs in September–January, the long-INI season occurs in March–May, and February and June–August are transitional months.](image-url)
Detected

Fin whales can be considered “Detected” if a pulse train comprised of 4 or more consecutively classified 20-Hz pulses with a constant internote interval of 8-16 seconds occurs in a 15-minute summary period (e.g., 4 pulses between which the internote interval is equal to 8 seconds, or 4 pulses between which the internote interval is equal to 12 seconds). Ideally, the internote interval will follow the trend specified in the Morano et al. 2012 paper. However, there may be some variation, especially in the transitional months.

The following figure is an example of when a fin whale could be considered “Detected”.

Many 20-Hz pulses regularly spaced every 10 seconds

This period was observed in September when fin whales in the western North Atlantic tend to transition down to 8-9 s INIs, so the shorter 10 s INI make sense here

LFDCS classified most pulses

= fin whale “Detected”
**Possibly detected**

When there are only 3 pulses in a pattern (2 or more of which have been classified by the LFDCS as a “fin whale”) and that is the only pattern of pulses in the 15-minute summary period, then it should be marked as “Possibly detected”. Be careful that song bouts can be “broken”, particularly when the calls are faint (i.e., there is a silent period where a pulse should be based on the internote interval). Do not count missing pulses (i.e., “phantom” pulses) as part of the song bout. Exercise caution when there is an abundance of low-frequency noise that is being pitch tracked; some low-frequency sounds may look like fin whale calls, but it is difficult to discriminate frequencies by eye near the bottom of the spectrogram.

The following figures are examples of when a fin whale could be considered “Possibly detected”.

![Spectrogram examples of fin whale possibly detected](image)
Multiple faint pulses with possible unclassified pulses before and after with regular internote intervals

LFDCS classified at least 2 consecutive pulses

= fin whale “Possibly detected”
**Not detected**

For patterned pulses to be considered “Not detected”, none of the pitch tracks in the patterned pulses should be classified, the internote interval varies, or the internote interval is not within the 8-16 second bounds.

The following figures are examples of when a fin whale could be considered “Not detected”.

DMON/LFDCS did not classify pulses
Internote interval is irregular (not between 8-16 seconds)

= **fin whale “Not detected”**
Pulses are regularly spaced but DMON/LFDCS did not identify the calls as fin whale pulses

= fin whale “Not detected”
Humpback whale

Quick guide

<table>
<thead>
<tr>
<th>LFDCS Classified (Y/N)</th>
<th>Pattern</th>
<th>Context</th>
<th>Number of calls needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected</td>
<td>Y/N</td>
<td>None</td>
<td>Many calls (5+)</td>
</tr>
<tr>
<td>Possibly detected</td>
<td>Y/N</td>
<td>None</td>
<td>Few calls (1-4)</td>
</tr>
<tr>
<td>Not detected</td>
<td>N</td>
<td>None</td>
<td>N/A</td>
</tr>
</tbody>
</table>

General

Humpback whale song is produced in identifiable patterns (unlike humpback social sounds, which have less patterned structure). Individual calls comprising these patterns can have frequencies ranging from 10s to 1000s of Hz. For a detailed description of humpback whale call and song characteristics, see Payne & McVay 1971, Payne & Payne 1985, and Winn & Winn 1978. These patterns are unambiguous in the pitch tracks when they are present and loud. The vast majority of humpback presence will be determined based on the presence of patterned song units, not from DMON/LFDCS classifications. Most humpback whale call types are not represented in the DMON/LFDCS call library, and those that are represented are many years old and may not be applicable to the sounds that humpbacks make today because humpbacks change their song from year to year, and their social sounds are not consistent over time or between populations. Therefore, DMON/LFDCS classification information for humpback whales should not be heavily relied upon (if at all).

Off the U.S. and Canadian eastern seabords, we often believe that many unknown sounds are produced by humpback whales. While there are little data to back up this belief, it is based upon the idea that humpback whales produce such a high variety of different sounds; so, when an unknown loud tonal sound is encountered, it is assumed to be just another call in the vast humpback whale call repertoire. As such, you may encounter unknown, well-pitch-tracked, loud frequency-modulated sounds in isolation (not accompanied by other sounds) that may or may not be produced with irregular intervals. These calls should be scored as “Detected” if you have other corroborating evidence of humpback presence (e.g., humpback singing in the previous 15-minute summary period), “Possibly detected” if you have other evidence, but there is still some doubt, or “Not detected” if you have no additional evidence for species attribution. Whatever you score, be sure to explain your reasoning in the Notes section for these types of calls. To emphasize again, our overriding principle is being conservative, so only mark a summary period as “Detected” if you are very sure of that species’ presence.

Noise in the upper half of the monitored frequency range can create spurious quiet pitch tracks that sometimes resemble faint humpback calling. Pitch tracks that are in the 500-1000 Hz band, are faint, and change frequency very quickly (making them look almost disjointed) should be viewed with some suspicion.
Detected

If you see patterned calling (e.g., song), then mark the summary period as “Detected” for humpback whales. If patterned calling is not present, look for frequency-modulated calls of moderate to high amplitude (loudness) that are not attributable to any other species. Calls will not necessarily have a DMON/LFDCS classification as the system does not recognize all the types of calls a humpback can make. Most of the time, in the tally table, humpback calls will be classified as “Other” because of this reason.

The following figures are examples of when a humpback whale could be considered “Detected”.

![Graphs showing examples of humpback whale calls](image-url)
Loud frequency-modulated calls
Multiple calls over several minutes
Not readily attributable to any other species
= humpback whale “Detected”
**Possibly detected**

Signals that are faint should be marked as “Possibly detected”. Sometimes the pitch tracks will have straight lines connecting calls. This is because it believes that those two calls belong together, even if they do not. When this happens, we will use the term “artifact”.

The following figures are examples of artifacts and faint humpback calls when a humpback whale could be considered “Possibly detected”.

[Diagrams showing examples of artifacts and faint calls]
**Not detected**

When there are only a few faint calls, mark the 15-minute summary period as “Not detected”. Examples of this are shown in the following figures.

Calls are very faint

Very hard to tell if the calls are spurious or actual humpback calls

= humpback whale “Not detected”
Supplementary Protocol: Identifying humpback whale song

Understanding Song Structure

Identifying Unique Themes

Humpback whale song has a hierarchical structure which is composed of units or “notes” (singular calls), phrases (short patterned series of units), themes (sections of repeating phrases), and multiple themes which make up a full song. While song patterns generally change from year to year, unique themes are often continued across years with some variation. Once a number of recognizable themes have been observed in a given year, those patterns can be used to help detect humpback whale presence for the remainder of that season.

Example of humpback song units
Example of humpback song phrase (patterned series of units)

Example of humpback song theme (repeating phrases)
Example of humpback song fragment (including two different themes)
Appendices
Appendix A: Known Idiosyncrasies

Artifacts of the pitch tracking algorithm

This has been explained, with examples, in the humpback whale “Possibly detected” section. It is important to note that not just humpbacks are susceptible to artifacts, but also right whale upcalls.

Webpage updates

If there is a “Daily analyst review” table in your project, it is important to note that after you have reviewed a pitch track (or multiple pitch tracks), it will take between 5-10 minutes for your classifications to be shown on that table. This is also generally true for filling out forms; if you go back to review a recently modified form, you may see that the form has not been filled out. That is not true, but rather that the web browser has not automatically refreshed the page. Simply click the “Reload” or “Refresh” button on your browser and the data that you entered into the form will be visible.
Appendix B: Additional Species Analysis Protocols

Note: If you have an additional real-time analysis protocol for another species or population that you would like to contribute to this reference guide, please email julianne.wilder@noaa.gov for more information.

Northwest Atlantic blue whale
Protocol written by Allison Richardson and Kimberley Davies (University of New Brunswick)
For questions about this protocol, please contact Allison Richardson at aricha13@unb.ca.

Quick guide

<table>
<thead>
<tr>
<th>LFDCS Classified (Y/N)</th>
<th>Pattern</th>
<th>Context</th>
<th>Number of calls needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected</td>
<td>N</td>
<td>Can have pattern, but does not need to be in pattern</td>
<td>If sei whales present, exercise caution</td>
</tr>
<tr>
<td>Possibly detected</td>
<td>N</td>
<td>Can have pattern, but does not need to be in pattern</td>
<td>If sei whales present, exercise caution</td>
</tr>
<tr>
<td>Not detected</td>
<td>N</td>
<td>None</td>
<td>N/A</td>
</tr>
</tbody>
</table>

General

Northwest Atlantic blue whales emit two types of audible calls that can be used for real-time passive acoustic monitoring. Low-frequency downsweeps known as D calls that can be produced in singlets or in bouts. Arch sounds consist of a short ascending portion which plateaus for a few seconds, followed by a long downsweep, creating a characteristic arch shape on a spectrogram. The ascending portion is often quieter than the rest of the call or, as is regularly the case in the Gulf of St. Lawrence, not loud enough to be picked up by the LFDCS. Therefore, it is sometimes not present in LFDCS pitch tracks, which only show the plateau/downsweep portion. Arch sounds are usually produced in bouts. Arch sounds are diagnostic of this species presence because no other species makes this kind of call in the low-frequency range. Arch sounds are produced between 30 and 70 Hz while D calls are produced between 35 and 75 Hz but can be produced up to 150 Hz.

Blue whale calls can be produced in pattern, but don’t have to be in pattern. The inter-pulse interval between calls can vary within a bout from 5-50 seconds. The number of calls in a bout is highly variable, with a single animal sometimes producing calls constantly over several tally periods. D calls can either be concave up, concave down, or have no concavity. Blue whale concave up D calls look very similar to sei whale downsweeps and can be misclassified by the LFDCS as a sei whale (call types 1-3). If there are only concave up D calls in a tally period, you should consider the possibility that sei whales are producing the calls. If there are concave
down D calls, no concavity D calls, or arch sounds, you should consider that there is a blue whale present.
**Detected**

Blue whales can be scored as "Detected" when there are 3 or more nicely shaped arch sounds in a tally period. Arch sounds typically occur in bouts of 4-8 calls. If D calls are present, there should be at least 2 concave down D calls to be confident that it is a blue whale producing the calls. D calls can be produced in bouts or can be produced in singlets. If there are more than 3 calls, with 2 being concave down, the period can be scored as "Detected" for blue whales.

The following images depict examples of "Detected" Northwest Atlantic blue whales.
No concavity D calls

Multiple high amplitude D calls with harmonics

A mixture of concave down D calls and D calls with no concavity

= blue whale “Detected”
**Possibly detected**

If there are only one or two arch sounds or if there are broken or low amplitude arch sounds that are not in a bout, then the period should be scored as "Possibly detected". If there are concave up D calls with only one concave down D call within the same tally period, then the period should be considered "Possibly detected". If there are D calls with no concavity or concave down D calls that are broken or do not have the best shape, then the period should be scored as "Possibly detected". If there are high amplitude, long concave up downsweeps that have a shallow slope, then the period should be scored as "Possibly detected".

The following images depict examples of "Possibly detected" Northwest Atlantic blue whales.
Only 2 concave down D calls
Calls are low amplitude
Pitch tracks are broken
= blue whale “Possibly detected”
2 confirmed arch sounds in panels 12 and 13

2 possible arch sounds in panel 11

Calls are low amplitude

= blue whale “Possibly detected”
Multiple long concave up D calls
Calls are high amplitude
= blue whale “Possibly detected”
If there are only concave up calls that look like blue whale concave up D calls or sei whale downsweeps without any signs of arch sounds, concave down D calls, or D calls with no concavity, then this period should be scored as "Not detected" and you should consider the possibility that there are sei whales present. See example below.

Only low-frequency calls that could either be concave up D calls or sei whale downsweeps

No signs of other blue whale calls

= blue whale “Not detected”
North Pacific blue whale

Protocol written by Ana Širović and Megan Wood (Texas A&M University Galveston)
For questions about this protocol, please contact Megan Wood at megan.wood@noaa.gov.
Note: This protocol has yet to be formally evaluated using archival data.

Quick guide

<table>
<thead>
<tr>
<th>A/B Calls</th>
<th>LFDCS Classified (Y/N)</th>
<th>Pattern</th>
<th>Context</th>
<th>Number of calls needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected</td>
<td>Y/N</td>
<td>A-B song</td>
<td>If only A calls, exercise caution when other noises around</td>
<td>1+ A-B sequence, classified or not or 2+ A or B calls at regular intervals, classified or not</td>
</tr>
<tr>
<td>Possibly detected</td>
<td>Y/N</td>
<td>No observed pattern</td>
<td>1 A or B, classified or not</td>
<td></td>
</tr>
<tr>
<td>Not detected</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D Calls</th>
<th>LFDCS Classified (Y/N)</th>
<th>Pattern</th>
<th>Context</th>
<th>Number of calls needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected</td>
<td>Y/N</td>
<td>No observed pattern, &gt;1 second duration</td>
<td>If humpbacks or other low-frequency sounds are around, exercise caution</td>
<td>2+ D calls classified or 3+ D calls not classified</td>
</tr>
<tr>
<td>Possibly detected</td>
<td>Y/N</td>
<td>No observed pattern, &gt;1 second duration</td>
<td>1 D calls classified or 2 unclassified</td>
<td></td>
</tr>
<tr>
<td>Not detected</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

General

Blue whales of both sexes emit downsweeps (also called D calls), sweeping typically from as high as 100-120 Hz to as low as 25 Hz and lasting more than 1 second. While blue whale D calls are generally low-frequency, signals that begin below 50 Hz or approach/touch 0 Hz should be viewed with suspicion. Additionally, signals that are jagged are more likely to be a product of spurious noise rather than biological sourcing. Furthermore, humpback whales may also produce downsweeps that can be mistaken for blue whale D calls. Humpback calls are typically higher in frequency, usually above 150 Hz, but can occasionally approach the same frequencies as blue whale D calls. In these instances context can be an important cue for discerning species. If the downsweep occurs absent humpback calls, it is more likely to be a product of blue whale calling. Calls classified as blue whale downsweeps will be labeled as call type 1 calls when using the Pacific call library.

Male blue whales also produce stereotyped A and B calls which, when patterned in sequences, are considered song. In southern California, the A call is a series of rapid pulses with peak energy around 90 Hz. When produced as part of a song sequence, it is followed by
a long tonal near 45 Hz, termed a B call, which has slight frequency modulation and often features an obvious downstep. The B call occasionally contains a step-down in frequency at the end of the call. When using the Pacific call library, calls classified by the detector as call A will be labeled as call type 40 while call B will be labeled as call 10 or 12 (depending on presence of step-down) and the step-down will be labeled as call type 20. For more information regarding blue whale calling behavior, consult Lewis & Širović 2017 and Oleson et al. 2007.
**Detected**

To score a tally period as "Detected" for North Pacific blue whales, at least three D calls should be present (only two needed if both are classified) or at least two A and/or B calls.

The following images depict examples of "Detected" North Pacific blue whales.

*Multiple pulses in the A call have been labeled as call type 40
The B call is labeled as call type 10, with characteristic down-step
= blue whale “Detected”*
3 D calls in tally period, 2 are classified

Signals are very strong and smooth

= blue whale “Detected”
**Possibly detected**

If there is only a single classified D call in a tally period, or less than three quality unclassified D calls, that period should be scored as "Possibly detected" for North Pacific blue whales. If there is only a single A or B call in a tally period, it should also be scored as "Possibly detected".

The following images depict examples of "Possibly detected" North Pacific blue whales.
A call has multiple classified pulses
No other A/B/D calls in tally period
= blue whale “Possibly detected”
**Not detected**

If there is a singular unclassified downsweep in a tally period, then it can be considered "Not detected". If there are several possible downsweeps but they are too short, jagged, or not in the expected frequency range, then score it as "Not detected". Singular pulses classified as call type 40 should be viewed with suspicion, as spurious low-frequency noises can be classified thusly by the detector.

The following images depict examples of periods that were scored as "Not detected" for North Pacific blue whales.
Signals are faint and short
No classifications
= blue whale “Not detected”
**Unique situations**

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Blue whale</th>
<th>Fin whale</th>
<th>Other</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/20/19 11:25:24</td>
<td>12</td>
<td>0</td>
<td>84</td>
<td>900</td>
</tr>
</tbody>
</table>

Putative A call is faint
Only one pulse in the sequence is classified
Tally table demonstrates more classified blue whale signals after pitch track data cutoff
= blue whale “Possibly detected” (with a note!)
North Pacific fin whale

Protocol written by Ana Širović and Megan Wood (Texas A&M University Galveston)
For questions about this protocol, please contact Megan Wood at megan.wood@noaa.gov.
Note: This protocol has yet to be formally evaluated using archival data.

Quick guide

<table>
<thead>
<tr>
<th></th>
<th>LFDCS Classified (Y/N)</th>
<th>Pattern</th>
<th>Context</th>
<th>Number of calls needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected</td>
<td>Y</td>
<td>Repeated with constant ~18-24 second intervals (do not count missing calls as part of pattern)</td>
<td>N/A</td>
<td>4+ calls in pattern (2+ must be classified as fin) with appropriate internote intervals (see Širović et al. 2017)</td>
</tr>
<tr>
<td>Possibly detected</td>
<td>Y</td>
<td>3 calls in pattern with constant 18-24 second intervals (do not count missing calls as part of pattern)</td>
<td>N/A</td>
<td>3 pulses in pattern (2+ must be classified as fin)</td>
</tr>
<tr>
<td>Not detected</td>
<td>N</td>
<td>No pattern or irregular pattern</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

General

Fin whales emit short (<1 second) 20 Hz pulses (downsweeps) that often occur in regular patterns as song although they can also occur intermittently. Interpulse or internote intervals in these songs can be between 18 and 24 seconds. This pattern will change interannually and seasonally, for a more detailed overview see Širović et al. 2017. Calls comprising sequences should have similar amplitudes. Spurious low-frequency noise can often be falsely classified by the detector as a fin whale pulse, so be sure to pay attention to the patterning. While 20 Hz pulses can occur singularly or not in a song-like pattern, detections will only be considered when patterned song is present because, in this context, the irregular signals are too difficult to distinguish from noise.
**Detected**

Fin whales can be considered "Detected" if a sequence comprising four or more 20 Hz pulses (two or more of which are classified as fin whales) with a constant internote interval of 18-24 seconds occurs in a 15-minute tally period. An example of this is shown below.
**Possibly detected**

When there are only three pulses in a sequence (two or more of which have been classified by the LFDCS as a “fin whale”), then it should be scored as “Possibly detected”. Be careful that pulse trains can be "broken", particularly when the calls are faint (i.e., there is a silent period where a pulse should be based on the internote interval). Do not count missing pulses (i.e., "phantom" pulses) as part of the pulse train. Exercise caution when there is an abundance of low-frequency noise that is being pitch tracked; some low-frequency sounds may look like fin whale calls, but it is difficult to discriminate frequencies by eye near the bottom of the spectrogram.

3 pulses spaced every 20 seconds
All classified by LFDCS as fin whale
= fin whale “Possibly detected”

3 pulses spaced every 23 seconds
2 classified by LFDCS as fin whale
= fin whale “Possibly detected”
**Not detected**

For a pulse train to be considered "Not detected", none of the calls in the pulse train are classified or the internote interval varies, or the internote interval is not within the 18-24 second bounds.

LFDCS classified pulses

Faint

Spacing between pulses is outside normal range (~1 minute)

= fin whale “Not detected”
Unique situations

<table>
<thead>
<tr>
<th>Date/time</th>
<th>Blue whale</th>
<th>Fin whale</th>
<th>Other</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/29/19 00:25:24</td>
<td>0</td>
<td>10</td>
<td>43</td>
<td>900</td>
</tr>
</tbody>
</table>

Loud and smooth pulses every ~20 seconds
None of the strong calls are classified
Classified fin calls occur after addet_off
= fin whale “Detected” (with note!)
North Pacific humpback whale

Protocol written by Ana Širović and Megan Wood (Texas A&M University Galveston)  
For questions about this protocol, please contact Megan Wood at megan.wood@noaa.gov.  
Note: This protocol has yet to be formally evaluated using archival data.

**Quick guide**

<table>
<thead>
<tr>
<th>LFDCS Classified (Y/N)</th>
<th>Pattern</th>
<th>Context</th>
<th>Number of calls needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected</td>
<td>Y/N</td>
<td>Often many calls grouped together that are repeated</td>
<td>Many calls (5+)</td>
</tr>
<tr>
<td>Possibly detected</td>
<td>Y/N</td>
<td>Some calls in repetition or no pattern</td>
<td>Few calls (1-4)</td>
</tr>
<tr>
<td>Not detected</td>
<td>Y/N</td>
<td>None</td>
<td>N/A</td>
</tr>
</tbody>
</table>

**General**

Humpback whale song is produced in identifiable patterns (unlike humpback social sounds, which have less patterned structure). Individual calls comprising these patterns can have frequencies ranging from 10s to 1000s of Hz. These patterns are unambiguous in the pitch tracks when they are present and loud. Humpback whale call types from California are currently not integrated into the LFDCS call library, therefore humpback whale calls are grouped in the 'Other' category of the classifier.

Off the California coast, we often believe that many unknown pitch-tracked sounds are produced by humpback whales. While there are little hard data to back up this belief, it is based upon the idea that humpback whales produce such a high variety of different sounds; so, when and unknown loud tonal sound is encountered, it is evaluated against the possibility of being another call in the vast humpback whale call repertoire. As such, you may encounter unknown, well-pitch-tracked, high intensity frequency-modulated sounds in isolation (not accompanied by other sounds) that may or may not be produced with irregular intervals. These calls should be scored as "Detected" if you have other corroborating evidence of humpback presence (e.g., humpback singing in the previous 15-minute summary period), "Possibly detected" if you have other evidence, but there is still some doubt, or "Not detected" if you have no additional evidence for species attribution. Whatever you score, be sure to explain your reasoning in the Notes section for these types of calls. To emphasize again, our overriding principle is being conservative, so only mark a summary period as "Detected" if you are very sure of that species' presence.

Noise in the upper half of the monitored frequency range can create spurious quiet pitch tracks that sometimes resemble faint humpback calling. Pitch tracks that are in the 500-1000 Hz band, are faint, and change frequency very quickly (making them look almost disjointed) should be viewed with some suspicion.
Detected

If you see patterned calling (e.g., song), then mark the summary period as "Detected" for humpback whales. If patterned calling is not present, look for frequency-modulated calls of moderate to high amplitude (loudness) that are not attributable to any other species.
**Possibly detected**

Signals that are faint should be marked as "Possibly detected". Some signals may also have connecting artifacts which can increase the difficulty when determining whether a pitch track is depicting a real call or just noise. This is explained in more detail in The Four Main Criteria: Shape section of this document.

![Artifact](image)

Faint calls
Several calls over multiple minutes
Some artifacts are present which makes it difficult to tell which calls are real and which are distorted

= humpback whale “Possibly detected”
**Not detected**

When there are only a few faint calls, score the 15-minute tally period as "Not detected". Calls that are very spurious should also be considered as "Not detected".

Detections are very faint with many artifacts

Very difficult to tell if the detections are spurious or actual humpback calls

= humpback whale “Not detected”
Detections are very faint
Rapid changes in frequency, disjointed appearance

= humpback whale “Not detected”
Unique situations

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Blue whale</th>
<th>Fin whale</th>
<th>Other</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/09/19 16:10:24</td>
<td>1</td>
<td>10</td>
<td>295</td>
<td>900</td>
</tr>
</tbody>
</table>

Call very faint and short
Pitch track data cuts off, but obvious from tally table there are lots of other sounds in this period

= humpback whale “Not detected” (but note)
Appendix C: Known Idiosyncrasies of the North Pacific Species

Call types 40 and 80

The LFDCS classification may label spurious pitch tracks of low-frequency noise with either blue whale call type 40 or fin whale call type 80. These classifications should be disregarded when analyzing pitch tracks for species presence. This situation can be seen in the blue whale "Not detected" and fin whale "Not detected" sections.

Artifacts of the pitch tracking algorithm

This has been explained, with examples, in the humpback whale “Possibly detected” section. It is important to note that not just humpbacks are susceptible to artifacts, but also right whale upcalls.

Webpage updates

If there is a “Daily analyst review” table in your project, it is important to note that after you have reviewed a pitch track (or multiple pitch tracks), it will take between 5-10 minutes for your classifications to be shown on that table. This is also generally true for filling out forms; if you go back to review a recently modified form, you may see that the form has not been filled out. That is not true, but rather that the web browser has not automatically refreshed the page. Simply click the “Reload” or “Refresh” button on your browser and the data that you entered into the form will be visible.
References


